
AT

1 Convergence and continuity

Theorem 1.1 (General principle of uniform convergence). Let fn : I → R be a sequence of functions.
fn converges uniformly iff fn is uniformly Cauchy.

Proof. ⇒: Trivial. ⇐: Prove pointwise convergence first. Use uniformly Cauchy property. Take limit.

Theorem 1.2. Let fn : I → R be a sequence of functions. fn → f uniformly iff supx∈I |fn(x)−f(x)| → 0
as n → 0.

Proof. Immediate from definition.

Theorem 1.3. Uniform limit of continuous function is continuous.

Proof. ϵ/3 argument.

Theorem 1.4. If fn → f uniformly on [a, b] ⊆ R (closed bounded), and each fn is Riemann integrable

on [a, b], then f is Riemann integrable and limn

∫ b

a
fn =

∫ b

a
f .

Proof. First, note that each fn is bounded, so f = fn + (f − fn is also bounded.
Let ϵ > 0 be given. By unif. conv., there exists N s.t. ∀x ∈ [a, b], |fN (x)− f(x)| < ϵ/(3(b− a)). So,

on any I ⊆ [a, b], supI f ≤ supI fN + ϵ/(3(b− a)).
By Riemann-integrability of fN , there exists a dissection D = {a = x0 < x1 < . . . < xk = b} s.t.

U(fN ,D)− L(fN ,D) < ϵ/3

Combine the results above, we get

U(f,D) ≤ U(fN ,D) + ϵ/3

L(f,D) ≥ L(fN ,D)− ϵ/3

Subtract, we get
U(f,D)− L(f,D) ≤ ϵ/3 + ϵ/3 + ϵ/3 = ϵ

Theorem 1.5. Let (fn : [a, b] → R) be a sequence of differentiable functions such that ∃x0 ∈ [a, b]
s.t. fn(x0) converges. Suppose f ′

n converges uniformly on [a, b], then fn converges uniformly to a
differentiable function f , and f ′ = limn f

′
n.

Proof. (c.f. 2011 and 2010 analysis II) Define auxilliary function

gc,n(x) =


fn(x)− f(c)

x− c
x ̸= c

f ′
n(c) x = c

Prove that (gc,n) is uniformly Cauchy (using MVT) and converges to gc(x) = (f(x) − f(c))/(x − c).
Interchange limit.

Alteranative (weaker) version: Suppose f ′
n → g uniformly. If fn are continuously differentiable, then

fn converges ptwise to a diff functions.
Have fn(x) = fn(x0) +

∫ x

x0
f ′
n by FTC. Unif. conv. implies that

∫ x

x0
f ′
n →

∫ x

x0
g, so have fn converges

pointwise, and the pointwise limit is diff by FTC.

1



Theorem 1.6. Continuous functions on closed bounded intervals are uniformly continuous.

Proof. 1) By compactness (need Heine-Borel); OR 2) by contradiction (Use Bolzano-Weierstrass).
Special case of “Continuous functions on a sequentially compact metric space are uniformly continu-

ous”.

Theorem 1.7 (Riemann integrability of continuous functions). Continuous functions on closed bounded
intervals are Riemann integrable

Proof. Given ϵ > 0, can find δ > 0 s.t. |f(x)− f(y)| < ϵ/(b− a) whenever |x− y| < δ. Take a dissection
D of [a, b] s.t. each subinterval has length < δ, then U(f,D)− L(f,D) < ϵ.

Theorem 1.8 (Weierstrass M-test). If there exists a sequence (Mn) of non-negative real numbers s.t.
|fn| ≤ Mn for all n ∈ N and

∑
n Mn converges, then

∑
n fn converges uniformly.

Proof. Prove that the sequence of partial sums is uniformly Cauchy.

Proposition 1.9 (Properties of power series). Let
∑

anx
n be a complex power seires with radius of

convergence R. Define f : x 7→
∑

anx
n. Then

1. f is cts

2. f is integrable term-by-term

3. f is differentiable and for all x ∈ D(0, R), the derivative f ′(x) is given by term-by-term differenti-
ation.

Proof. Weierstrass M-test for local uniform convergence, then the rest follows.

Theorem 1.10 (Dini’s theorem). Let X be a compact metric space and (fn) a sequence of continuous
real valued functions on X which is decreasing. If fn → f pointwise to a cts function f , then the
convergence is uniform.

Theorem 1.11 (Arzela-Ascoli (non-examinable but useful)). s

2 Metric space

Definition 2.1. Completeness: every cauchy sequence converges within the space.
Sequential compactness: every sequence has a convergent subsequence that converges in the set.
Total boundedness: For all ϵ > 0, there exists finite A ⊆ X s.t. ∀x ∈ X, ∃a ∈ A, d(x, a) < ϵ. (For any
ϵ > 0, X can be covered by a finite collection of open ϵ-balls centered in X.)

Proposition 2.2. (Metric space) ϵ− δ continuity ⇔ “open sets”/Nbd continuity.

Proof. f : X → Y .
First show that continuity at a is equivalent to f−1(N) being a nbd of a for all nbd N of f(a).
Use this to show that if G is open in Y then G is a nbd of every point y ∈ G. Use nbd continuity.

Conversely, definition chasing.

Theorem 2.3 (Contraction mapping theorem). Let (X, d) be a non-empty, complete, metric space. If
f : X → X is a contraction (i.e., there exists K < 1 s.t. d(f(x1), f(x2)) ≤ Kd(x1, x2) for all x1, x2 ∈ X),
then f has a unique fixed point in X.

Proof. X ̸= ∅, so take x0 ∈ X. Construct a sequence recursively by xn+1 = f(xn), then if ∆ = d(x0, x1),
we must have d(xn, xn+1) ≤ Kn∆. So, for N ≤ m < n

d(xn, xm) ≤
n∑

i=m

d(xi, xi+1) ≤ ∆

n∑
i=m

Ki ≤ KN∆

1−K
→ 0

as N → ∞, so (xn)n≥0 is a Cauchy sequence, which converges in X by completeness. Let x = limn xn,
then f(x) = x by uniqueness of limit. If there is another fixed point y, then d(x, y) = d(f(x), f(y)) ≤
Kd(f(x), f(y)), so the only way this holds is d(x, y) = 0 so x = y.

Proposition 2.4. lp is complete. (c.f. Kolmogorov, Introductory Real Analysis)
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Proof. lp is the space of sequences (xn) s.t
∑

|xn|p < ∞. Metric is given by d(x, y) = (
∑

|xn − yn|p)1/p.
Given a Cauchy sequence (x(n))n∈N, we see that each coordinates must be a Cauchy sequence in R, so we

have a pointwise limit x. For all M , we have the partial sum
∑M

k=1 |x
(n)
k −x

(m)
k |p < ϵ for sufficiently large

m,n, Let m → ∞, and then let M → ∞, we get
∑∞

k=1 |x
(n)
k − xk|p ≤ ϵ, then use Minkowski’s inequality

(p = 2 reduces to Cauchy-Schwarz) to conclude that the convergence of
∑

|x(n)
k |p and

∑
|x(n)

k − xk|
implies the convergence of

∑
|xk|p. So the pointwise limit is in lp. Then we can invoke metric notation

and deduce completeness.

Lemma 2.5. U ⊆ Rn closed and bounded, V ⊆ Rm closed, then C(U, V ) (equipped with the uniform
metric) is complete

Proof. Take a Cauchy sequence, then this sequence of (cts) functions is uniformly Cauchy, hence uni-
formly converges to a cts function. Note that V is closed, so the image of the limit function lies in
V .

Theorem 2.6 (Picard-Lindelöf). Let a, b ∈ R with a < b. Let t0 ∈ (a, b). Let y0 ∈ Rn. Let ϕ : [a, b] ×
Bδ(y0) → Rn be continuous, and s.t. ∃K > 0 s.t. ∀t ∈ [0, 1] and ∀x, y ∈ Bδ(y0), ∥ϕ(t, x) − ϕ(t, y)∥ ≤
K∥x − y∥. Then, there exists ϵ > 0 s.t. the IVP f ′(t) = ϕ(t, f(t)), f(t0) = y0 has a unique solution on
[t0 − ϵ, t0 + ϵ] ⊆ [a, b].

Proof. Consider the operator T : C([t0 − ϵ, t0 + ϵ], Bδ(y0)) →? (uniform metric assumed) defined by

T (f) = y0 +

∫ x

t0

ϕ(t, f(t))dt

We want T to be a self map, i.e., im(Tf) ⊆ Bδ(y0), so consider

∥T (f)− y0∥ ≤
∫ x

t0

∥ϕ(t, f(t))∥dt ≤ M |x− t0| ≤ Mϵ ≤ δ

So we choose ϵ ≤ δ/M , where M is the bound of ϕ on this compact interval. Now, consider

∥T (f), T (g)∥ ≤
∫ x

t0

∥ϕ(t, f(t))− ϕ(t, g(t))∥dt ≤
∫ x

t0

K∥f(t)− g(t)∥dt ≤ K|x− t0|d(f, g) ≤ Kϵd(f, g)

Choose ϵ small enough so that Kϵ < 1, then we have a contraction mapping. Use Lemma 2.4 and CMT
to deduce the existence of a unique fixed pt. By FTC, the unique fixed point is precisely the solution to
the IVP.

Theorem 2.7 (Improved version of Picard-Lindelöf (Sheet 2 Q9)).

Theorem 2.8. Let (X, d) be a metric space. TFAE,

• (X, d) is compact;

• (X, d) is sequentially compact;

• (X, d) is complete and totally bounded.

If X ⊆ Rn (equipped with Euclidean metric), then

• (X, d) is closed and bounded.

Proof. Sequential compactness ⇔ complete and totally bounded:
⇒: Suppose not complete but sequentially compact, then have a cauchy sequence which doesn’t converge
in X, but it has a subsequence which converges in X, so the sequence converges in X. Contradiction.
Suppose not totally bounded, then

∃ϵ∀A ⊆ X finite ,∃x ∈ X∀a ∈ A, d(x, a) ≥ ϵ

Pick x1 ∈ X, and recursively let An = {x1, . . . , xn}, then can pick xn+1 s.t. d(xi, xn+1) ≥ ϵ for all i ≤ n.
This gives a sequence s.t. for all i, j ∈ N i ̸= j ⇒ d(xi, xj) ≥ ϵ, so it has no convergent subsequence.
⇐: (Similar to a bisection proof) Suppose complete and totally bounded. Let (xn) be a sequence in
X. Can find A1 finite such that all X ⊆

⋃
a∈A1

B1/2(a). So there exists a1 ∈ A1 s.t. d(xn, a1) < 1/2
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infinitely often, so pick a subsequence (xn1,j
)j∈N. Keep going and for each k ∈ N, can find subsequence

(xn2,j
) of (xn1,j

) such that they all lie in B1/4(a2). Repeat this process. Obtain a bunch of sequences. Use
diagonalization to get a Cauchy sequence, which converges in X by completeness, so X is sequentially
compact.

Compactness ⇔ sequential compactness: ⇒: If compact but not sequentially compact, then find a
sequence (xn) with no convergent subsequence. Then, for all a ∈ X, there exists Ga open which contains
only finitely many xn (Otherwise we would have a convergent subsequence).

⋃
a∈X Ga gives an open

cover, which reduces to a finite subcover, but then X can only contain finitely many xn, contradiction.
⇐: Want to use total boundedness to find a finite subcover. Let C be an open cover of X. Claim:

∃δ > 0,∀a ∈ X,∃G ∈ C : Bδ(a) ⊆ G

If not then for all n ∈ N, there exists xn ∈ X witht the property that ∀G ∈ C, B1/n(xn) ̸⊆ G. Sequential
compactness gives a convergent subsequence. Let x be the limit, then x ∈ G0 ∈ C, meaning that
Bϵ(x) ⊆ G0, but then can go sufficiently far down the subsequence so that everyone lies in Bϵ(x) and
1/n < ϵ. Contradiction. So such δ exists. By total boundedness (implied by sequential compactness)
can cover X by a finite collection of δ-balls, so can take finitely many G ∈ C to cover X, which is a finite
subcover of C.

For subsets of Euclidean spaces. If closed and bounded, then Bolzano-Weierstrass implies that X is
sequentially compact. Conversely, if not closed then find a convergent sequence that doesn’t converge
in X, then it can’t have subsequences converging in X by uniqueness of limit. If not bounded, then
obviously have unbounded sequence which has no convergent subsequence.

Corollary 2.9 (Heine-Borel). A subsets of Euclidean space is compact iff it’s closed and bounded. [This
implies that [0, 1] (usual metric) is compact.]

Proof.

Proposition 2.10. Compact metric spaces are complete.

Proof. Compact implies sequentially compact, so any cauchy sequence has a convergent subsequence,
then the whole sequence must converge.

Theorem 2.11. Continuous functions on a compact metric space is uniformly continuous

Proof. For each point in x ∈ K, ∃δx > 0 s.t. ϵ-δ condition holds. Take union of δx-balls (open cover).
Pass to a finite subcover.

Theorem 2.12. Let (X, d) be a sequentially compact metric space, and f : X → X isometry, then f is
bijective.

Proof. Injectivity is trivial. Assume y ̸∈ f(X), then by sequential compactness and continuity, ∃ϵ > 0
s.t. d(f(x), y) ≥ ϵ. Let x0 = x and define xn+1 = f(xn), we have for i < j, d(xi, xj) = d(x0, xj−i) ≥ ϵ,
so (xi) has no convergent subsequences, contradicting sequential comapctness.

3 Topology

Proposition 3.1. Open set continuity (Continuity) =⇒ sequential continuity. (The converse is false
even for Hausdorff space)

Proposition 3.2. [0, 1] is connected.

Proof. (IVT banned) Suppose not, then have U, V ⊆ [0, 1] disjoint open subsets s.t. U ∪ V = [0, 1].
WLOG, 1 ∈ V . Let η = supU . Have η ̸= 0, 1 otherwise U = {0} is not open or 1 is not an interior point
of V .

Suppose 0 < η < 1, then if η ∈ U , then get contradiction as there is an open nbd of η in U . If
η ∈ V , then the same argument (go downward instead of upward) gives a contradiction. So [0, 1] is
connected.

Proof. (IVT not banned). Map an open set to 0 and the other to 1, get a cts function, IVT implies that
it must hit 1/2 somewhere, contradiction.
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Proposition 3.3. Path-connectedness implies connectedness. For subsets of Rn with the Euclidean
topology, connectedness implies path-connectedness.

Theorem 3.4. Image of connected (resp. compact) sets under continuous functions are connected (resp.
compact).

Theorem 3.5. Continuous real-valued function on sequentially compact sets is bounded and attains its
bound.

Corollary 3.6. (X, d) metric space and K ⊆ X sequentially compact, then for all x ∈ X \ K, there
exists ϵ > 0 s.t. for all y ∈ K, d(x, y) ≥ ϵ and ∃z ∈ K s.t. d(x, z) = ϵ

Proof. Consider y 7→ d(x, y).

Proposition 3.7. Finite Cartesian product of connected (resp. compact) sets are connected (resp.
compact).

Proof.

Theorem 3.8. Intersection of nested sequence of closed comapct sets is non-empty.

Proof. (c.f. Sheet 3)

Lemma 3.9. Closed subset of compact space is compact; compact subset of Hausdorff space is closed.

Proof. K compact. X ⊆ K closed. X \K open Take an open cover of X, then by adjoining X \K if
necessary, we get an open cover of K, which has a finite subcover, then remove X \K if necessary, we
get a finite subcover of X.

Y Hausdorff, X ⊆ Y compact. Pick y ∈ Y \ X, then for each x ∈ X there exists nbd Ux, Vy s.t.
Ux ∩ Vy = 0, {Ux} is an open cover of X, so pass to a finite subcover, then construct V ⊆ Y \ X by
taking intersection, so Y \X is open.

Theorem 3.10 (Topological inverse function theorem). A continuous bijection from a compact space to
a Hausdorff space is a homeomorphism.

Proof. It suffices to prove that this is a closed map. Given a closed set in the domain, then it’s compact,
its image is a compact subset of Hausdorff space, hence closed.

Theorem 3.11 (Universal property of quotient topology). Let (X, τ) be a top. space and ∼ an equiv.
relation on X. Let q : X → X/∼ be the quotient map and let f : X → Y be a cts function respecting ∼,
then ∃! f̃ cts s.t. f = f̃ ◦ q. [X/∼ is equipped with the quotient topology.]

Proof. First prove that there is a well-defined f̃ , and it is clearly unique by commutativity requirement.
Then use definition of quotient topology to prove continuity. Pullback an open set G ⊆ Y via (q ◦ f̃)
get an open set in X by continuity of f . Quotient topology says f̃−1(G) is open in the quotient iff
q−1f̃−1(G) is open in X which is true by continuity of f .

3.1 Equivalence of topologies

4 Multivariate differentiation

Proposition 4.1 (Operator norm). α ∈ L(Rn,Rm), define ∥α∥ = sup{∥α(x)∥ : ∥x∥ = 1}.

• ∥α∥ ≥ 0 with equality iff α = 0

• ∥λα∥ = |λ|∥α∥ for scalars λ

• ∥α+ β∥ ≤ ∥α∥+ ∥β∥.

• ∥α(x)∥ ≤ ∥α∥∥x∥

• If γ ∈ L(Rm,Rk), then ∥γ ◦ α∥ ≤ ∥α∥∥β∥

Proposition 4.2. “Equivalence” of Operator norm and Euclidean norm

Proof. Bound by some obvious inequalities.
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Proposition 4.3 (Chain rule). Let U ⊆ Rm, V ⊆ Rn. If f : U → Rn, g : V → Rk, and f(U) ⊆ V and
f is diff at a ∈ U , g is diff at f(a), then g ◦ f is differentiable at a and D(g ◦ f)|a = Dg|f(a) ◦Df |a.

Proof. Algebra bash. Write b = f(a) and{
f(a+ h) = f(a) + S(h) + ϵ(h)∥h∥
g(b+ k) = g(b) + T (k) + δ(k)∥k∥

So
g(f(a+ h)) = g(b+ S(h) + ϵ(h)∥h∥)

Expand. will get two terms. One of them is o(∥h∥) by direct computation (divide by norm h, goes to
zero) The other term goes to zero by estimating using operator norm.

Theorem 4.4. If all partial derivatives exist and are continuous in a nbd of a point, then f is differen-
tiable.

Proof. WLOG, m = 1 (looking at each coordiante separately). For general n apply MVT multiple
times.

Remark 1. In fact, we only require n− 1 partial derivatives to be continuous in a nbd of that point.

Theorem 4.5 (Mean value inequality). Let f : Rn → Rm and let a, b ∈ Rn. Suppose f is diferentiable
at z for all z ∈ [a, b] = {a+ t(b− a) : t ∈ [0, 1]}. Then,

∥f(b)− f(a)∥ ≤ ∥b− a∥ sup
z∈[a,b]

∥Df |z∥

Proof. Define F : [0, 1] → R by

F (t) = f(a+ t(b− a)) · (f(b)− f(a))

Notice that F (1)− F (0) = ∥f(b)− f(a)∥2. F is differentiable with

DF |t(h) = (f(b)− f(a)) ·Df |a+t(b−a)(h(b− a))

(chain rule), so F ′(t) = (f(b)−f(a))·Df |a+t(b−a)(b−a). We apply MVT to conclude that |F (1)−F (0)| =
|F ′(ξ)| for some ξ ∈ (0, 1), so

∥f(b)− f(a)∥2 = |F (1)− F (0)|
= |F ′(ξ)|
≤ ∥f(b)− f(a)∥∥Df |a+ξ(b−a)(b− a)∥
≤ ∥f(b)− f(a)∥∥Df |a+ξ(b−a)∥∥b− a∥
≤ ∥f(b)− f(a)∥∥b− a∥ sup

z∈[a,b]

∥Df |z∥

where we have used Cauchy-Schwarz and properties of operator norm.

Corollary 4.6. Let f : Rn → Rm and let G ⊆ Rn be open and connected. Suppose for all z ∈ G, f is
differentiable at z with Df |z being the zero map. Then f is constant on G.

Theorem 4.7 (Symmetry of mixed partial derivatives). Suppose f : Rn → Rm and z ∈ Rn. If DiDjf
and DjDif exists and cts in a nbd of z and are cts at z, then DiDjf = DjDif .

Proof. WLOG, n = 2, m = 1. Consider ∆h = f(x+ h, y+ h)− f(x+ h, y)− (f(x, y+ h)− f(x, y)). Use
differentiability on each bracket and apply MVT. By similar argument can deduce two formula of ∆h in
terms of mixed partial. Let h → 0.

Theorem 4.8 (Second order Taylor’s theorem). Let f : Rn → Rm be twice differentiable, then

f(a+ h) = f(a) +Df |a(h) +
1

2
D2f |a(h, h) + o(∥h∥)2
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Proof. WLOG, m = 1. Define

φh(t) = f(a+ th)− f(a)− tDf |a(h) +
t2

2
D2f |a(h, h)

Note that φh(1) − φh(0) is the expression we want. Want to prove that this difference is o(∥h∥2), so
apply MVT and use the definition of second derivative to manipulate.

Theorem 4.9 (Inverse function theorem). Let f : Rn → Rn, a ∈ Rn, and b = f(a). Suppose there exists
ome open nbd A of a s.t. f is continuouslu differentiable at every x ∈ A and Df |a is non-singular. Then
there are open nbd U of a and V of b s.t. f |U : U → V is a homeomorphism. Moreover, if g : V → U is
the inverse, then g is continuously differentiable at all y ∈ V with Dg|y = (Df |x)−1, where y = f(x).

Proof. Step 0: Let A = Df |a. For each y ∈ Rn define φy(x) = x + A−1(y − f(x)). Can find λ > 0 s.t.
2λ∥A−1∥ = 1. By continuity of derivative, can find an open ball U about a s.t. ∥A−Df |x∥ < λ for all
x ∈ U .

Step 1: For each y0 = f(x0) ∈ f(U), there exists δ > 0 and η > 0 s.t. for all y ∈ Bη(y0), φy|Bδ(x0)
is

a contraction mapping. First, note that on U , Dφy|x = I −A−1 ◦Df |x = A−1(A−Df |x). The norm of
this thing is ≤ λ(1/2λ) = 1/2 on U , so by mean value inequality, we have (for all x1, x2 ∈ U)

∥φy(x1)− φy(x2)∥ ≤ 1

2
∥x2 − x1∥

This implies that φy can have at most one fixed point in U , i.e., f(x) = y has at most one solution for

x in U . Second, pick δ > 0 s.t. Bδ(x0) ⊆ U , and let η = λδ. Now, for x ∈ Bδ(x0) and y ∈ Bλδ(y0),

∥φy(x)− x0∥ ≤ ∥φy(x)− φy(x0)∥+ ∥φy(x0)− x0∥

≤ 1

2
∥x− x0∥+ ∥A−1∥∥y − y0∥ ≤ δ

2
+

λδ

2λ
= δ

Contraction mapping theorem then implies that there exists a unique x ∈ Bδ(x0) s.t. f(x) = y. Also,
we see that if y0 ∈ f(U), then Bλδ(y0) ⊆ f(U), i.e., f(U) is open. This shows that f |U : U → f(U) is a
continuous bijection from open set U to open set f(U).

Step 3: Let g = (f |U )−1. We wish to show that g is continuous. Let y1 = f(x1), y2 = f(x2) for some
x1, x2 ∈ U . Note that for y ∈ Rn

1

2
∥x1 − x2∥ ≥ ∥φy(x1)− φ(x2)∥ = ∥x1 − x2 +A−1(y2 − y1)∥ ≥ ∥x1 − x2∥ − ∥A−1(y2 − y1)∥

Rearranging, get

∥g(y1)− g(y2)∥ = ∥x1 − x2∥ ≤ 2∥A−1(y2 − y1)∥ ≤ 2∥A−1∥∥y1 − y2∥

So g is continuous

5 Useful estimates/inequalities

• ex ≥ xn/n! for x > 0

6 Counterexamples

Example 1 (Pointwise limit of cts func being discontinuous). fn(x) = xn on [0, 1] OR fn(x) = (1−x2)n

on [−1, 1]

Example 2 (Limit of integral != integral of ptwise limit). Increasing spike.

Example 3 (Uniform limit of differentiable functions being non-differentiable). fn(x) =
√
x2 + 1/n on

[−1, 1]

Example 4. Uniform limit of differentiable functions being differentiable but the limit is incorrect

fn(x) =
x

1 + nx2
, then lim f ′

n(x) = f ′(x) is true iff x ̸= 0.

Example 5 (bounded but not totally bounded). Closed unit ball in l2.

Example 6 (Function on a Hausdorff space which preserve limits but is discontinuous).

Example 7 (Connected but not path-connected). X = {(x, sin(1/x)) : x ∈ (0, 1]} ∪ {(0, y) : y ∈ [0, 1]}.
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