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1 Convergence and continuity

Theorem 1.1 (General principle of uniform convergence). Let f, : I — R be a sequence of functions.
fn converges uniformly iff fr is uniformly Cauchy.

Proof. =: Trivial. <=: Prove pointwise convergence first. Use uniformly Cauchy property. Take limit.
O

Theorem 1.2. Let f,, : I — R be a sequence of functions. f, — f uniformly iff sup,¢; | frn(z)—f(2)] = 0
asn — 0.

Proof. Immediate from definition. O
Theorem 1.3. Uniform limit of continuous function is continuous.
Proof. €/3 argument. O

Theorem 1.4. If f, — f uniformly on [a,b] C R (closed bounded), and each f, is Riemann integrable
on [a,b], then f is Riemann integrable and lim, f: fn= f; f.

Proof. First, note that each f,, is bounded, so f = f, + (f — f» is also bounded.

Let € > 0 be given. By unif. conv., there exists N s.t. Vz € [a,b], |fn(z) — f(z)] < €/(3(b—a)). So,
on any I C [a,b], sup; f < sup; fv +€/(3(b—a)).

By Riemann-integrability of fx, there exists a dissection D = {a = zp < 1 < ... < xf = b} s.t.

U(fn,D)— L(fn,D) <€/3

Combine the results above, we get

Subtract, we get
U(f,D)— L(f,D) <¢/3+¢€/3+¢€/3=¢

O

Theorem 1.5. Let (f, : [a,b] — R) be a sequence of differentiable functions such that Jzo € [a, b
s.t. fn(xo) converges. Suppose f), converges uniformly on [a,b], then f, converges uniformly to a
differentiable function f, and f' = lim, f].

Proof. (c.f. 2011 and 2010 analysis IT) Define auxilliary function

fn(z) — fle)
Jen(x) = T —c zFC
fr(e) r=c

Prove that (g.,) is uniformly Cauchy (using MVT) and converges to g.(z) = (f(z) — f(¢))/(z — ¢).
Interchange limit. O

Alteranative (weaker) version: Suppose f;, — ¢ uniformly. If f,, are continuously differentiable, then
fn converges ptwise to a diff functions.

Have f,(z) = fn(zo) + f;o f/, by FTC. Unif. conv. implies that f;ﬂ = f;o g, so have f,, converges
pointwise, and the pointwise limit is diff by FTC.



Theorem 1.6. Continuous functions on closed bounded intervals are uniformly continuous.

Proof. 1) By compactness (need Heine-Borel); OR 2) by contradiction (Use Bolzano-Weierstrass).
Special case of “Continuous functions on a sequentially compact metric space are uniformly continu-
ous”. O

Theorem 1.7 (Riemann integrability of continuous functions). Continuous functions on closed bounded
intervals are Riemann integrable

Proof. Given € > 0, can find § > 0 s.t. |f(x) — f(y)| < €/(b— a) whenever |x — y| < §. Take a dissection
D of [a,b] s.t. each subinterval has length < §, then U(f, D) — L(f,D) < e. O

Theorem 1.8 (Weierstrass M-test). If there exists a sequence (My) of non-negative real numbers s.t.
|fn| < My, for alln € N and Y, M, converges, then ), f, converges uniformly.

Proof. Prove that the sequence of partial sums is uniformly Cauchy. O

Proposition 1.9 (Properties of power series). Let > anz™ be a complex power seires with radius of
convergence R. Define f:x+— > anx™. Then

1. f is cts
2. f is integrable term-by-term

3. f is differentiable and for all x € D(0, R), the derivative f'(x) is given by term-by-term differenti-
ation.

Proof. Weierstrass M-test for local uniform convergence, then the rest follows. O

Theorem 1.10 (Dini’s theorem). Let X be a compact metric space and (f,) a sequence of continuous
real valued functions on X which is decreasing. If f, — [ pointwise to a cts function f, then the
convergence is uniform.

Theorem 1.11 (Arzela-Ascoli (non-examinable but useful)). s

2 DMetric space

Definition 2.1. Completeness: every cauchy sequence converges within the space.

Sequential compactness: every sequence has a convergent subsequence that converges in the set.

Total boundedness: For all € > 0, there exists finite A C X s.t. Vo € X, Ja € A, d(z,a) < e. (For any
€ > 0, X can be covered by a finite collection of open e-balls centered in X.)

Proposition 2.2. (Metric space) € — & continuity < “open sets” /Nbd continuity.

Proof. f: X =Y.

First show that continuity at a is equivalent to f~!(N) being a nbd of a for all nbd N of f(a).

Use this to show that if G is open in Y then G is a nbd of every point y € G. Use nbd continuity.
Conversely, definition chasing. O

Theorem 2.3 (Contraction mapping theorem). Let (X,d) be a non-empty, complete, metric space. If
f: X — X is a contraction (i.e., there exists K < 1 s.t. d(f(z1), f(z2)) < Kd(x1,x2) for allzy,z9 € X),
then f has a unique fized point in X.

Proof. X # @, so take xy € X. Construct a sequence recursively by z,+1 = f(z,), then if A = d(z, x1),
we must have d(z,, Zn1) < K"A. So, for N <m<n

KNAH
1-K

d(n, Tm) < i d(zi, zip1) <A i Ki<

i=m i=m

as N — 00, 80 (Z)n>0 is a Cauchy sequence, which converges in X by completeness. Let z = lim,, ,,
then f(x) = x by uniqueness of limit. If there is another fixed point y, then d(z,y) = d(f(x), f(y)) <

Kd(f(x), f(y)), so the only way this holds is d(x,y) = 0 so x = y. O

Proposition 2.4. [P is complete. (c.f. Kolmogorov, Introductory Real Analysis)
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Proof. 1P is the space of sequences () s.t 3. |£,|P < oo. Metric is given by d(z,y) = (3 |2n — yn|?)/P.
Given a Cauchy sequence (m(”))neN, we see that each coordinates must be a Cauchy sequence in R, so we

have a pointwise limit x. For all M, we have the partial sum Ei/il \x,(cn) —x,(cm) [P < € for sufficiently large

m,n, Let m — oo, and then let M — oo, we get Y oo, |a:§€n)

— 2x|P < €, then use Minkowski’s inequality
(p = 2 reduces to Cauchy-Schwarz) to conclude that the convergence of ) |x,(€n)|p and Y |.Z‘§€n) — x|
implies the convergence of > |z|P. So the pointwise limit is in [?. Then we can invoke metric notation

and deduce completeness. O

Lemma 2.5. U C R” closed and bounded, V' C R™ closed, then C'(U,V) (equipped with the uniform
metric) is complete

Proof. Take a Cauchy sequence, then this sequence of (cts) functions is uniformly Cauchy, hence uni-
formly converges to a cts function. Note that V is closed, so the image of the limit function lies in
V. O

Theorem 2.6 (Picard-Lindeldf). Let a,b € R with a < b. Let ty € (a,b). Let yo € R™. Let ¢ : [a,b] X
Bs(yo) = R™ be continuous, and s.t. IK > 0 s.t. Vt € [0,1] and Vz,y € Bs(yo), ||¢(t,z) — o(t,v)| <
K||x — yl||. Then, there exists € > 0 s.t. the IVP f'(t) = ¢(t, f(¢)), f(to) = yo has a unique solution on
[to — €, to + €] C [a,b].

Proof. Consider the operator T : C([to — €,to + €], Bs(yo)) —7 (uniform metric assumed) defined by

T(f) = yo + / "ol F()dt

We want T to be a self map, i.e., im(Tf) C Bs(yo), so consider
17 - woll < [ 9(t F(©)ldt < Mo~ ta] < Me <
to

So we choose € < /M, where M is the bound of ¢ on this compact interval. Now, consider

.0l < [ "ol £(1)) — olt,g(e)) |t < / "KIF(0) - g)ldt < Kl — told(f.9) < Ked(f,g)

Choose € small enough so that Ke < 1, then we have a contraction mapping. Use Lemma 2.4 and CMT
to deduce the existence of a unique fixed pt. By FTC, the unique fixed point is precisely the solution to
the IVP. O

Theorem 2.7 (Improved version of Picard-Lindel6f (Sheet 2 Q9)).
Theorem 2.8. Let (X,d) be a metric space. TFAE,

e (X,d) is compact;

o (X,d) is sequentially compact;

e (X,d) is complete and totally bounded.
If X CR" (equipped with Euclidean metric), then

o (X,d) is closed and bounded.

Proof. Sequential compactness < complete and totally bounded:

=: Suppose not complete but sequentially compact, then have a cauchy sequence which doesn’t converge
in X, but it has a subsequence which converges in X, so the sequence converges in X. Contradiction.
Suppose not totally bounded, then

JeVA C X finite ,dx € XVa € A, d(x,a) > ¢

Pick 1 € X, and recursively let A,, = {x1,...,x,}, then can pick z, 1 s.t. d(z;, Xny1) > € forall i <n.
This gives a sequence s.t. for all 4,5 € N i # j = d(x;,x;) > €, so it has no convergent subsequence.

<: (Similar to a bisection proof) Suppose complete and totally bounded. Let (z,) be a sequence in
X. Can find A; finite such that all X C [J,c4, Bij2(a). So there exists a1 € Ay s.t. d(wp,a1) < 1/2
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infinitely often, so pick a subsequence (2, ;) en. Keep going and for each k € N, can find subsequence
(Tp, ;) of (xn, ;) such that they all lie in By /4(az2). Repeat this process. Obtain a bunch of sequences. Use
diagonalization to get a Cauchy sequence, which converges in X by completeness, so X is sequentially
compact.

Compactness < sequential compactness: =: If compact but not sequentially compact, then find a
sequence (z,,) with no convergent subsequence. Then, for all a € X, there exists G, open which contains
only finitely many x,, (Otherwise we would have a convergent subsequence). |J,cyx Ga gives an open
cover, which reduces to a finite subcover, but then X can only contain finitely many x,,, contradiction.
<: Want to use total boundedness to find a finite subcover. Let C be an open cover of X. Claim:

36 > 0,Ya € X,3G € C : Bs(a) C G

If not then for all n € N, there exists x,, € X witht the property that VG € C, By, (z,) € G. Sequential
compactness gives a convergent subsequence. Let x be the limit, then z € Gy € C, meaning that
B.(x) C Gy, but then can go sufficiently far down the subsequence so that everyone lies in Bc(z) and
1/n < e. Contradiction. So such § exists. By total boundedness (implied by sequential compactness)
can cover X by a finite collection of d-balls, so can take finitely many G € C to cover X, which is a finite
subcover of C.

For subsets of Euclidean spaces. If closed and bounded, then Bolzano-Weierstrass implies that X is
sequentially compact. Conversely, if not closed then find a convergent sequence that doesn’t converge
in X, then it can’t have subsequences converging in X by uniqueness of limit. If not bounded, then
obviously have unbounded sequence which has no convergent subsequence. O

Corollary 2.9 (Heine-Borel). A subsets of FEuclidean space is compact iff it’s closed and bounded. [This
implies that [0,1] (usual metric) is compact.]

Proof. O
Proposition 2.10. Compact metric spaces are complete.

Proof. Compact implies sequentially compact, so any cauchy sequence has a convergent subsequence,
then the whole sequence must converge. O

Theorem 2.11. Continuous functions on a compact metric space is uniformly continuous

Proof. For each point in z € K, 3§, > 0 s.t. e-J condition holds. Take union of §,-balls (open cover).
Pass to a finite subcover. O

Theorem 2.12. Let (X,d) be a sequentially compact metric space, and f : X — X isometry, then f is
bijective.

Proof. Injectivity is trivial. Assume y ¢ f(X), then by sequential compactness and continuity, Je > 0
s.t. d(f(z),y) > €. Let o = = and define z,,41 = f(x,), we have for i < j, d(z;,z;) = d(zo,zj—i) > €,
so (z;) has no convergent subsequences, contradicting sequential comapctness. O

3 Topology

Proposition 3.1. Open set continuity (Continuity) —> sequential continuity. (The converse is false
even for Hausdorff space)

Proposition 3.2. [0, 1] is connected.

Proof. (IVT banned) Suppose not, then have U,V C [0,1] disjoint open subsets s.t. U UV = [0,1].
WLOG, 1 € V. Let n =supU. Have 5 # 0, 1 otherwise U = {0} is not open or 1 is not an interior point
of V.

Suppose 0 < 1 < 1, then if n € U, then get contradiction as there is an open nbd of n in U. If
n € V, then the same argument (go downward instead of upward) gives a contradiction. So [0,1] is
connected. O

Proof. (IVT not banned). Map an open set to 0 and the other to 1, get a cts function, IVT implies that
it must hit 1/2 somewhere, contradiction. O



Proposition 3.3. Path-connectedness implies connectedness. For subsets of R™ with the Euclidean
topology, connectedness implies path-connectedness.

Theorem 3.4. Image of connected (resp. compact) sets under continuous functions are connected (resp.
compact).

Theorem 3.5. Continuous real-valued function on sequentially compact sets is bounded and attains its
bound.

Corollary 3.6. (X,d) metric space and K C X sequentially compact, then for all x € X \ K, there
exists € > 0 s.t. for ally € K, d(z,y) > € and 3z € K s.t. d(z,2) =¢

Proof. Consider y — d(x,y). O

Proposition 3.7. Finite Cartesian product of connected (resp. compact) sets are connected (resp.
compact).

Proof. O
Theorem 3.8. Intersection of nested sequence of closed comapct sets is non-empty.

Proof. (c.f. Sheet 3) O
Lemma 3.9. Closed subset of compact space is compact; compact subset of Hausdorff space is closed.

Proof. K compact. X C K closed. X \ K open Take an open cover of X, then by adjoining X \ K if
necessary, we get an open cover of K, which has a finite subcover, then remove X \ K if necessary, we
get a finite subcover of X.

Y Hausdorff, X C Y compact. Pick y € ¥ \ X, then for each & € X there exists nbd U,V s.t.
U, NVy =0, {Ugy} is an open cover of X, so pass to a finite subcover, then construct V' C Y \ X by
taking intersection, so Y \ X is open. O

Theorem 3.10 (Topological inverse function theorem). A continuous bijection from a compact space to
a Hausdorff space is a homeomorphism.

Proof. Tt suffices to prove that this is a closed map. Given a closed set in the domain, then it’s compact,
its image is a compact subset of Hausdorff space, hence closed. O

Theorem 3.11 (Universal property of quotient topology). Let (X, 7) be a top. space and ~ an equiv.
relation on X. Let ¢ : X — X/~ be the quotient map and let f : X —Y be a cts function respecting ~,
then 3! f cts s.t. f = foq. [X/~ is equipped with the quotient topology.]

Proof. First prove that there is a well-defined f , and it is clearly unique by commutativity requirement.
Then use definition of quotient topology to prove continuity. Pullback an open set G C Y via (¢ o f )
get an open set in X by continuity of f. Quotient topology says f*I(G) is open in the quotient iff
q_lf_l(G) is open in X which is true by continuity of f. O

3.1 Equivalence of topologies

4 Multivariate differentiation
Proposition 4.1 (Operator norm). a € L(R™,R™), define ||a| = sup{||e(z)| : ||| = 1}.

o ||a|| > 0 with equality iff « =0

[IAall = [A|||lex|| for scalars A
llee+ Bl < lledll + 1131]-

la(@)]| < llelll=]

Ify € LR™,R*), then |y oall < [laf|A]

Proposition 4.2. “Equivalence” of Operator norm and Fuclidean norm

Proof. Bound by some obvious inequalities. O



Proposition 4.3 (Chain rule). Let U CR™, VCR". If f:U = R", g:V = RF and f(U) CV and
[is diff at a € U, g is diff at f(a), then go f is differentiable at a and D(g o f)|a = Dglf(a) © D fla-

Proof. Algebra bash. Write b = f(a) and
{f(a+h) f(@) + S(k) + e(h) 1]
(b+ k) =g(b) + T (k) + (k)| k]

So
g(fla+h)) = g(b+ S(h) +e(h)||A]])

Expand. will get two terms. One of them is o(]|h]|) by direct computation (divide by norm h, goes to
zero) The other term goes to zero by estimating using operator norm. O

Theorem 4.4. If all partial derivatives exist and are continuous in a nbd of a point, then f is differen-
tiable.

Proof. WLOG, m = 1 (looking at each coordiante separately). For general n apply MVT multiple
times. O

Remark 1. In fact, we only require n — 1 partial derivatives to be continuous in a nbd of that point.

Theorem 4.5 (Mean value inequality). Let f : R®™ — R™ and let a,b € R™. Suppose f is diferentiable
at z for all z € [a,b] = {a+t(b—a):t € [0,1]}. Then,

[£(b) = f(a)l| < Ib—all sup [|IDf]]l
z€[a,b]

Proof. Define F': [0,1] — R by

F(t) = fla+tb—a))- () = f(a))
Notice that F(1) — F(0) = || f(b) — f(a)||?. F is differentiable with

DF[i(h) = (f(b) = f(a)) - Dflatt(p—a)(h(b — a))

(chain rule), so F'(t) = (f(b) = f(a)) D fl|a+t(p—a)(b—a). We apply MVT to conclude that |F(1)—F(0)| =
|F’(€)] for some € € (0,1), so

1£(6) = f(a)|I* = |F(1) — F(0)]
= [F'(¢)]
< £ ) = F(@Dflatew-a) (b — )
< 1F®) = F(@) D flatew—a b —al
< |IF(6) = F(a)[llb = al| sup D[]

z€la,b
where we have used Cauchy-Schwarz and properties of operator norm. O

Corollary 4.6. Let f: R™ — R™ and let G C R"™ be open and connected. Suppose for all z € G, f is
differentiable at z with Df|, being the zero map. Then f is constant on G.

Theorem 4.7 (Symmetry of mixed partial derivatives). Suppose f : R™ — R™ and z € R™. If D,D, f
and D;D; f exists and cts in a nbd of z and are cts at z, then D;D;f = D;D; f.

Proof. WLOG, n =2, m = 1. Consider Ay, = f(x+h,y+h)— f(x+h,y) — (f(z,y+h) — f(z,y)). Use
differentiability on each bracket and apply MVT. By similar argument can deduce two formula of Ay in
terms of mixed partial. Let h — 0. O

Theorem 4.8 (Second order Taylor’s theorem). Let f : R™ — R™ be twice differentiable, then

Flat h) = f(a) + Dfla(h) + 3D fla(h ) + ol 1]



Proof. WLOG, m = 1. Define

on(t) = fa+th) = f(@) = tDJla(h) + 5 D?fla(h, )

Note that o5, (1) — ¢ (0) is the expression we want. Want to prove that this difference is o(||h||?), so
apply MVT and use the definition of second derivative to manipulate. O

Theorem 4.9 (Inverse function theorem). Let f : R™ — R", a € R™, and b = f(a). Suppose there exists
ome open nbd A of a s.t. f is continuouslu differentiable at every x € A and Df|, is non-singular. Then
there are open nbd U of a and V of b s.t. fly : U — V is a homeomorphism. Moreover, if g:V — U is
the inverse, then g is continuously differentiable at all y € V with Dgl, = (Df|;)~', where y = f(z).

Proof. Step 0: Let A = Df|,. For each y € R™ define ¢, (z) =+ A7 (y — f(z)). Can find A > 0 s.t.
2)\||A~Y| = 1. By continuity of derivative, can find an open ball U about a s.t. ||[A — Df|.]| < X for all
zeU.

Step 1: For each yo = f(z0) € f(U), there exists 6 > 0 and n > 0 s.t. for all y € B, (yo), goy|m is
a contraction mapping. First, note that on U, Dyy|, =1 — A" o Df|, = A='*(A— Df|,). The norm of
this thing is < A(1/2X) = 1/2 on U, so by mean value inequality, we have (for all 1,25 € U)

1
lpy(@1) = @y(z2)]| < Sllz2 — 24

This implies that ¢, can have at most one fixed point in U, i.e., f(z) = y has at most one solution for

2 in U. Second, pick § > 0 s.t. Bs(xg) C U, and let n = Ad. Now, for = € Bs(xg) and y € Bxs(yo),

oy () — zoll < [ley(x) — @y (@o)ll + lloy (o) — ol
A
2\
Contraction mapping theorem then implies that there exists a unique x € Bs(xg) s.t. f(z) = y. Also,
we see that if yo € f(U), then Bys(yo) C f(U), i.e., f(U) is open. This shows that f|y : U — f(U) is a
continuous bijection from open set U to open set f(U).

Step 3: Let g = (f|y)~!. We wish to show that g is continuous. Let y; = f(x1), y2 = f(x2) for some
1,22 € U. Note that for y € R™

1 _ )
< Sl =woll + 147 lly = woll < 5 + 5

1 _ _
Flzr = z2ll 2 oy (21) = (z2)]| = [l21 — 22 + A Y2 =yl = [ler — 22l = 1A (2 — )|
Rearranging, get

lg(1) = g(y) | = llwr = @2l < 2147 (g2 = y0) | < 20147 llys — gl

So g is continuous O

5 Useful estimates/inequalities

e ¢ > g™ /nl for x >0

6 Counterexamples

Example 1 (Pointwise limit of cts func being discontinuous). f,(x) = 2™ on [0,1] OR f,(x) = (1—2?)"
on [—1,1]

Example 2 (Limit of integral != integral of ptwise limit). Increasing spike.

Example 3 (Uniform limit of differentiable functions being non-differentiable). f,(x) = /224 1/n on
[_1’ 1]

Example 4. Uniform limit of differentiable functions being differentiable but the limit is incorrect

fulz) = ﬁ, then lim f) (x) = f'(z) is true iff x # 0.
Example 5 (bounded but not totally bounded). Closed unit ball in I2.
Example 6 (Function on a Hausdorff space which preserve limits but is discontinuous).

Example 7 (Connected but not path-connected). X = {(z,sin(1/z)) : z € (0,1]} U{(0,y) : y € [0,1]}.
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