AT

1 Convergence and continuity

Theorem 1.1 (General principle of uniform convergence). Let $f_n: I \to \mathbb{R}$ be a sequence of functions. f_n converges uniformly iff f_n is uniformly Cauchy.

 $Proof. \Rightarrow$: Trivial. \Leftarrow : Prove pointwise convergence first. Use uniformly Cauchy property. Take limit.

Theorem 1.2. Let $f_n: I \to \mathbb{R}$ be a sequence of functions. $f_n \to f$ uniformly iff $\sup_{x \in I} |f_n(x) - f(x)| \to 0$ as $n \to 0$.

Proof. Immediate from definition.

Theorem 1.3. Uniform limit of continuous function is continuous.

Proof. $\epsilon/3$ argument.

Theorem 1.4. If $f_n \to f$ uniformly on $[a,b] \subseteq \mathbb{R}$ (closed bounded), and each f_n is Riemann integrable on [a,b], then f is Riemann integrable and $\lim_n \int_a^b f_n = \int_a^b f$.

Proof. First, note that each f_n is bounded, so $f = f_n + (f - f_n)$ is also bounded.

Let $\epsilon > 0$ be given. By unif. conv., there exists N s.t. $\forall x \in [a, b], |f_N(x) - f(x)| < \epsilon/(3(b-a))$. So, on any $I \subseteq [a, b], \sup_I f \le \sup_I f_N + \epsilon/(3(b-a))$.

By Riemann-integrability of f_N , there exists a dissection $\mathcal{D} = \{a = x_0 < x_1 < \ldots < x_k = b\}$ s.t.

$$U(f_N, \mathcal{D}) - L(f_N, \mathcal{D}) < \epsilon/3$$

Combine the results above, we get

$$U(f, \mathcal{D}) \le U(f_N, \mathcal{D}) + \epsilon/3$$

 $L(f, \mathcal{D}) \ge L(f_N, \mathcal{D}) - \epsilon/3$

Subtract, we get

$$U(f, \mathcal{D}) - L(f, \mathcal{D}) \le \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$$

Theorem 1.5. Let $(f_n : [a,b] \to \mathbb{R})$ be a sequence of differentiable functions such that $\exists x_0 \in [a,b]$ s.t. $f_n(x_0)$ converges. Suppose f'_n converges uniformly on [a,b], then f_n converges uniformly to a differentiable function f, and $f' = \lim_n f'_n$.

Proof. (c.f. 2011 and 2010 analysis II) Define auxilliary function

$$g_{c,n}(x) = \begin{cases} \frac{f_n(x) - f(c)}{x - c} & x \neq c \\ f'_n(c) & x = c \end{cases}$$

Prove that $(g_{c,n})$ is uniformly Cauchy (using MVT) and converges to $g_c(x) = (f(x) - f(c))/(x - c)$. Interchange limit.

Alternative (weaker) version: Suppose $f'_n \to g$ uniformly. If f_n are continuously differentiable, then f_n converges ptwise to a diff functions.

Have $f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n$ by FTC. Unif. conv. implies that $\int_{x_0}^x f'_n \to \int_{x_0}^x g$, so have f_n converges pointwise, and the pointwise limit is diff by FTC.

Theorem 1.6. Continuous functions on closed bounded intervals are uniformly continuous.

Proof. 1) By compactness (need Heine-Borel); OR 2) by contradiction (Use Bolzano-Weierstrass).

Special case of "Continuous functions on a sequentially compact metric space are uniformly continuous"

Theorem 1.7 (Riemann integrability of continuous functions). Continuous functions on closed bounded intervals are Riemann integrable

Proof. Given $\epsilon > 0$, can find $\delta > 0$ s.t. $|f(x) - f(y)| < \epsilon/(b-a)$ whenever $|x - y| < \delta$. Take a dissection \mathcal{D} of [a, b] s.t. each subinterval has length $< \delta$, then $U(f, \mathcal{D}) - L(f, \mathcal{D}) < \epsilon$.

Theorem 1.8 (Weierstrass M-test). If there exists a sequence (M_n) of non-negative real numbers s.t. $|f_n| \leq M_n$ for all $n \in \mathbb{N}$ and $\sum_n M_n$ converges, then $\sum_n f_n$ converges uniformly.

Proof. Prove that the sequence of partial sums is uniformly Cauchy.

Proposition 1.9 (Properties of power series). Let $\sum a_n x^n$ be a complex power series with radius of convergence R. Define $f: x \mapsto \sum a_n x^n$. Then

- 1. f is cts
- 2. f is integrable term-by-term
- 3. f is differentiable and for all $x \in D(0,R)$, the derivative f'(x) is given by term-by-term differentiation.

Proof. Weierstrass M-test for local uniform convergence, then the rest follows.

Theorem 1.10 (Dini's theorem). Let X be a compact metric space and (f_n) a sequence of continuous real valued functions on X which is decreasing. If $f_n \to f$ pointwise to a cts function f, then the convergence is uniform.

Theorem 1.11 (Arzela-Ascoli (non-examinable but useful)). s

2 Metric space

Definition 2.1. Completeness: every cauchy sequence converges within the space. Sequential compactness: every sequence has a convergent subsequence that converges in the set. Total boundedness: For all a > 0, there exists finite $A \subseteq Y$ at $\forall x \in Y$, $\exists a \in A$, $d(x, a) \in C$.

Total boundedness: For all $\epsilon > 0$, there exists finite $A \subseteq X$ s.t. $\forall x \in X, \exists a \in A, d(x, a) < \epsilon$. (For any $\epsilon > 0, X$ can be covered by a finite collection of open ϵ -balls centered in X.)

Proposition 2.2. (Metric space) $\epsilon - \delta$ continuity \Leftrightarrow "open sets"/Nbd continuity.

Proof. $f: X \to Y$.

First show that continuity at a is equivalent to $f^{-1}(N)$ being a nbd of a for all nbd N of f(a).

Use this to show that if G is open in Y then G is a nbd of every point $y \in G$. Use nbd continuity. Conversely, definition chasing.

Theorem 2.3 (Contraction mapping theorem). Let (X,d) be a non-empty, complete, metric space. If $f: X \to X$ is a contraction (i.e., there exists K < 1 s.t. $d(f(x_1), f(x_2)) \le Kd(x_1, x_2)$ for all $x_1, x_2 \in X$), then f has a unique fixed point in X.

Proof. $X \neq \emptyset$, so take $x_0 \in X$. Construct a sequence recursively by $x_{n+1} = f(x_n)$, then if $\Delta = d(x_0, x_1)$, we must have $d(x_n, x_{n+1}) \leq K^n \Delta$. So, for $N \leq m < n$

$$d(x_n, x_m) \le \sum_{i=m}^n d(x_i, x_{i+1}) \le \Delta \sum_{i=m}^n K^i \le \frac{K^N \Delta}{1 - K} \to 0$$

as $N \to \infty$, so $(x_n)_{n \ge 0}$ is a Cauchy sequence, which converges in X by completeness. Let $x = \lim_n x_n$, then f(x) = x by uniqueness of limit. If there is another fixed point y, then $d(x,y) = d(f(x), f(y)) \le Kd(f(x), f(y))$, so the only way this holds is d(x,y) = 0 so x = y.

Proposition 2.4. l^p is complete. (c.f. Kolmogorov, Introductory Real Analysis)

Proof. l^p is the space of sequences (x_n) s.t $\sum |x_n|^p < \infty$. Metric is given by $d(x,y) = (\sum |x_n - y_n|^p)^{1/p}$. Given a Cauchy sequence $(x^{(n)})_{n \in \mathbb{N}}$, we see that each coordinates must be a Cauchy sequence in \mathbb{R} , so we have a pointwise limit x. For all M, we have the partial sum $\sum_{k=1}^M |x_k^{(n)} - x_k^{(m)}|^p < \epsilon$ for sufficiently large m, n, Let $m \to \infty$, and then let $M \to \infty$, we get $\sum_{k=1}^\infty |x_k^{(n)} - x_k|^p \le \epsilon$, then use Minkowski's inequality (p=2 reduces to Cauchy-Schwarz) to conclude that the convergence of $\sum |x_k^{(n)}|^p$ and $\sum |x_k^{(n)} - x_k|$ implies the convergence of $\sum |x_k|^p$. So the pointwise limit is in l^p . Then we can invoke metric notation and deduce completeness.

Lemma 2.5. $U \subseteq \mathbb{R}^n$ closed and bounded, $V \subseteq \mathbb{R}^m$ closed, then C(U, V) (equipped with the uniform metric) is complete

Proof. Take a Cauchy sequence, then this sequence of (cts) functions is uniformly Cauchy, hence uniformly converges to a cts function. Note that V is closed, so the image of the limit function lies in V.

Theorem 2.6 (Picard-Lindelöf). Let $a, b \in \mathbb{R}$ with a < b. Let $t_0 \in (a, b)$. Let $y_0 \in \mathbb{R}^n$. Let $\phi : [a, b] \times \overline{B_{\delta}(y_0)} \to \mathbb{R}^n$ be continuous, and s.t. $\exists K > 0$ s.t. $\forall t \in [0, 1]$ and $\forall x, y \in \overline{B_{\delta}(y_0)}$, $\|\phi(t, x) - \phi(t, y)\| \le K\|x - y\|$. Then, there exists $\epsilon > 0$ s.t. the IVP $f'(t) = \phi(t, f(t)), f(t_0) = y_0$ has a unique solution on $[t_0 - \epsilon, t_0 + \epsilon] \subseteq [a, b]$.

Proof. Consider the operator $T: C([t_0 - \epsilon, t_0 + \epsilon], \overline{B_{\delta}(y_0)}) \rightarrow ?$ (uniform metric assumed) defined by

$$T(f) = y_0 + \int_{t_0}^{x} \phi(t, f(t))dt$$

We want T to be a self map, i.e., $\operatorname{im}(Tf) \subseteq \overline{B_{\delta}(y_0)}$, so consider

$$||T(f) - y_0|| \le \int_{t_0}^x ||\phi(t, f(t))|| dt \le M|x - t_0| \le M\epsilon \le \delta$$

So we choose $\epsilon \leq \delta/M$, where M is the bound of ϕ on this compact interval. Now, consider

$$||T(f), T(g)|| \le \int_{t_0}^x ||\phi(t, f(t)) - \phi(t, g(t))||dt \le \int_{t_0}^x K||f(t) - g(t)||dt \le K|x - t_0|d(f, g) \le K\epsilon d(f, g)$$

Choose ϵ small enough so that $K\epsilon < 1$, then we have a contraction mapping. Use Lemma 2.4 and CMT to deduce the existence of a unique fixed pt. By FTC, the unique fixed point is precisely the solution to the IVP.

Theorem 2.7 (Improved version of Picard-Lindelöf (Sheet 2 Q9)).

Theorem 2.8. Let (X,d) be a metric space. TFAE,

- (X,d) is compact;
- (X, d) is sequentially compact;
- (X, d) is complete and totally bounded.

If $X \subseteq \mathbb{R}^n$ (equipped with Euclidean metric), then

• (X,d) is closed and bounded.

Proof. Sequential compactness \Leftrightarrow complete and totally bounded:

 \Rightarrow : Suppose not complete but sequentially compact, then have a cauchy sequence which doesn't converge in X, but it has a subsequence which converges in X, so the sequence converges in X. Contradiction. Suppose not totally bounded, then

$$\exists \epsilon \forall A \subseteq X \text{ finite }, \exists x \in X \forall a \in A, d(x, a) \geq \epsilon$$

Pick $x_1 \in X$, and recursively let $A_n = \{x_1, \dots, x_n\}$, then can pick x_{n+1} s.t. $d(x_i, x_{n+1}) \ge \epsilon$ for all $i \le n$. This gives a sequence s.t. for all $i, j \in \mathbb{N}$ $i \ne j \Rightarrow d(x_i, x_j) \ge \epsilon$, so it has no convergent subsequence. \Leftarrow : (Similar to a bisection proof) Suppose complete and totally bounded. Let (x_n) be a sequence in X. Can find A_1 finite such that all $X \subseteq \bigcup_{a \in A_1} B_{1/2}(a)$. So there exists $a_1 \in A_1$ s.t. $d(x_n, a_1) < 1/2$

infinitely often, so pick a subsequence $(x_{n_{1,j}})_{j\in\mathbb{N}}$. Keep going and for each $k\in\mathbb{N}$, can find subsequence $(x_{n_{2,j}})$ of $(x_{n_{1,j}})$ such that they all lie in $B_{1/4}(a_2)$. Repeat this process. Obtain a bunch of sequences. Use diagonalization to get a Cauchy sequence, which converges in X by completeness, so X is sequentially compact.

Compactness \Leftrightarrow sequential compactness: \Rightarrow : If compact but not sequentially compact, then find a sequence (x_n) with no convergent subsequence. Then, for all $a \in X$, there exists G_a open which contains only finitely many x_n (Otherwise we would have a convergent subsequence). $\bigcup_{a \in X} G_a$ gives an open cover, which reduces to a finite subcover, but then X can only contain finitely many x_n , contradiction. \Leftarrow : Want to use total boundedness to find a finite subcover. Let C be an open cover of X. Claim:

$$\exists \delta > 0, \forall a \in X, \exists G \in C : B_{\delta}(a) \subseteq G$$

If not then for all $n \in \mathbb{N}$, there exists $x_n \in X$ with the property that $\forall G \in C$, $B_{1/n}(x_n) \not\subseteq G$. Sequential compactness gives a convergent subsequence. Let x be the limit, then $x \in G_0 \in C$, meaning that $B_{\epsilon}(x) \subseteq G_0$, but then can go sufficiently far down the subsequence so that everyone lies in $B_{\epsilon}(x)$ and $1/n < \epsilon$. Contradiction. So such δ exists. By total boundedness (implied by sequential compactness) can cover X by a finite collection of δ -balls, so can take finitely many $G \in C$ to cover X, which is a finite subcover of C.

For subsets of Euclidean spaces. If closed and bounded, then Bolzano-Weierstrass implies that X is sequentially compact. Conversely, if not closed then find a convergent sequence that doesn't converge in X, then it can't have subsequences converging in X by uniqueness of limit. If not bounded, then obviously have unbounded sequence which has no convergent subsequence.

Corollary 2.9 (Heine-Borel). A subsets of Euclidean space is compact iff it's closed and bounded. [This implies that [0,1] (usual metric) is compact.]

Proof.

Proposition 2.10. Compact metric spaces are complete.

Proof. Compact implies sequentially compact, so any cauchy sequence has a convergent subsequence, then the whole sequence must converge. \Box

Theorem 2.11. Continuous functions on a compact metric space is uniformly continuous

Proof. For each point in $x \in K$, $\exists \delta_x > 0$ s.t. ϵ - δ condition holds. Take union of δ_x -balls (open cover). Pass to a finite subcover.

Theorem 2.12. Let (X,d) be a sequentially compact metric space, and $f:X\to X$ isometry, then f is bijective.

Proof. Injectivity is trivial. Assume $y \notin f(X)$, then by sequential compactness and continuity, $\exists \epsilon > 0$ s.t. $d(f(x), y) \geq \epsilon$. Let $x_0 = x$ and define $x_{n+1} = f(x_n)$, we have for i < j, $d(x_i, x_j) = d(x_0, x_{j-i}) \geq \epsilon$, so (x_i) has no convergent subsequences, contradicting sequential comapctness.

3 Topology

Proposition 3.1. Open set continuity (Continuity) \implies sequential continuity. (The converse is false even for Hausdorff space)

Proposition 3.2. [0,1] is connected.

Proof. (IVT banned) Suppose not, then have $U, V \subseteq [0, 1]$ disjoint open subsets s.t. $U \cup V = [0, 1]$. WLOG, $1 \in V$. Let $\eta = \sup U$. Have $\eta \neq 0, 1$ otherwise $U = \{0\}$ is not open or 1 is not an interior point of V.

Suppose $0 < \eta < 1$, then if $\eta \in U$, then get contradiction as there is an open nbd of η in U. If $\eta \in V$, then the same argument (go downward instead of upward) gives a contradiction. So [0,1] is connected.

Proof. (IVT not banned). Map an open set to 0 and the other to 1, get a cts function, IVT implies that it must hit 1/2 somewhere, contradiction.

Proposition 3.3. Path-connectedness implies connectedness. For subsets of \mathbb{R}^n with the Euclidean topology, connectedness implies path-connectedness.

Theorem 3.4. Image of connected (resp. compact) sets under continuous functions are connected (resp. compact).

Theorem 3.5. Continuous real-valued function on sequentially compact sets is bounded and attains its bound.

Corollary 3.6. (X,d) metric space and $K \subseteq X$ sequentially compact, then for all $x \in X \setminus K$, there exists $\epsilon > 0$ s.t. for all $y \in K$, $d(x,y) \ge \epsilon$ and $\exists z \in K$ s.t. $d(x,z) = \epsilon$

Proof. Consider $y \mapsto d(x, y)$.

Proposition 3.7. Finite Cartesian product of connected (resp. compact) sets are connected (resp. compact).

Proof.

Theorem 3.8. Intersection of nested sequence of closed comapct sets is non-empty.

Proof. (c.f. Sheet 3) \Box

Lemma 3.9. Closed subset of compact space is compact; compact subset of Hausdorff space is closed.

Proof. K compact. $X \subseteq K$ closed. $X \setminus K$ open Take an open cover of X, then by adjoining $X \setminus K$ if necessary, we get an open cover of K, which has a finite subcover, then remove $X \setminus K$ if necessary, we get a finite subcover of X.

Y Hausdorff, $X \subseteq Y$ compact. Pick $y \in Y \setminus X$, then for each $x \in X$ there exists nbd U_x, V_y s.t. $U_x \cap V_y = 0$, $\{U_x\}$ is an open cover of X, so pass to a finite subcover, then construct $V \subseteq Y \setminus X$ by taking intersection, so $Y \setminus X$ is open.

Theorem 3.10 (Topological inverse function theorem). A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Proof. It suffices to prove that this is a closed map. Given a closed set in the domain, then it's compact, its image is a compact subset of Hausdorff space, hence closed. \Box

Theorem 3.11 (Universal property of quotient topology). Let (X, τ) be a top. space and \sim an equiv. relation on X. Let $q: X \to X/\sim$ be the quotient map and let $f: X \to Y$ be a cts function respecting \sim , then $\exists!$ \tilde{f} cts s.t. $f = \tilde{f} \circ q$. $[X/\sim is equipped with the quotient topology.]$

Proof. First prove that there is a well-defined \tilde{f} , and it is clearly unique by commutativity requirement. Then use definition of quotient topology to prove continuity. Pullback an open set $G \subseteq Y$ via $(q \circ \tilde{f})$ get an open set in X by continuity of f. Quotient topology says $\tilde{f}^{-1}(G)$ is open in the quotient iff $q^{-1}\tilde{f}^{-1}(G)$ is open in X which is true by continuity of f.

3.1 Equivalence of topologies

4 Multivariate differentiation

Proposition 4.1 (Operator norm). $\alpha \in L(\mathbb{R}^n, \mathbb{R}^m)$, define $\|\alpha\| = \sup\{\|\alpha(x)\| : \|x\| = 1\}$.

- $\|\alpha\| \ge 0$ with equality iff $\alpha = 0$
- $\|\lambda\alpha\| = |\lambda| \|\alpha\|$ for scalars λ
- $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.
- $\bullet \ \|\alpha(x)\| \leq \|\alpha\| \|x\|$
- If $\gamma \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $\|\gamma \circ \alpha\| \leq \|\alpha\| \|\beta\|$

Proposition 4.2. "Equivalence" of Operator norm and Euclidean norm

Proof. Bound by some obvious inequalities.

Proposition 4.3 (Chain rule). Let $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$. If $f: U \to \mathbb{R}^n$, $g: V \to \mathbb{R}^k$, and $f(U) \subseteq V$ and f is diff at $a \in U$, g is diff at f(a), then $g \circ f$ is differentiable at a and $D(g \circ f)|_a = Dg|_{f(a)} \circ Df|_a$.

Proof. Algebra bash. Write b = f(a) and

$$\begin{cases} f(a+h) = f(a) + S(h) + \epsilon(h) ||h|| \\ g(b+k) = g(b) + T(k) + \delta(k) ||k|| \end{cases}$$

So

$$g(f(a+h)) = g(b+S(h)+\epsilon(h)||h||)$$

Expand. will get two terms. One of them is $o(\|h\|)$ by direct computation (divide by norm h, goes to zero) The other term goes to zero by estimating using operator norm.

Theorem 4.4. If all partial derivatives exist and are continuous in a nbd of a point, then f is differentiable.

Proof. WLOG, m=1 (looking at each coordinate separately). For general n apply MVT multiple times.

Remark 1. In fact, we only require n-1 partial derivatives to be continuous in a nbd of that point.

Theorem 4.5 (Mean value inequality). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and let $a, b \in \mathbb{R}^n$. Suppose f is differentiable at z for all $z \in [a, b] = \{a + t(b - a) : t \in [0, 1]\}$. Then,

$$||f(b) - f(a)|| \le ||b - a|| \sup_{z \in [a,b]} ||Df|_z||$$

Proof. Define $F:[0,1]\to\mathbb{R}$ by

$$F(t) = f(a + t(b - a)) \cdot (f(b) - f(a))$$

Notice that $F(1) - F(0) = ||f(b) - f(a)||^2$. F is differentiable with

$$DF|_{t}(h) = (f(b) - f(a)) \cdot Df|_{a+t(b-a)}(h(b-a))$$

(chain rule), so $F'(t) = (f(b) - f(a)) \cdot Df|_{a+t(b-a)}(b-a)$. We apply MVT to conclude that $|F(1) - F(0)| = |F'(\xi)|$ for some $\xi \in (0,1)$, so

$$\begin{split} \|f(b) - f(a)\|^2 &= |F(1) - F(0)| \\ &= |F'(\xi)| \\ &\leq \|f(b) - f(a)\| \|Df|_{a+\xi(b-a)}(b-a)\| \\ &\leq \|f(b) - f(a)\| \|Df|_{a+\xi(b-a)}\| \|b-a\| \\ &\leq \|f(b) - f(a)\| \|b-a\| \sup_{z \in [a,b]} \|Df|_z\| \end{split}$$

where we have used Cauchy-Schwarz and properties of operator norm.

Corollary 4.6. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and let $G \subseteq \mathbb{R}^n$ be open and connected. Suppose for all $z \in G$, f is differentiable at z with $Df|_z$ being the zero map. Then f is constant on G.

Theorem 4.7 (Symmetry of mixed partial derivatives). Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ and $z \in \mathbb{R}^n$. If $D_i D_j f$ and $D_j D_i f$ exists and cts in a nbd of z and are cts at z, then $D_i D_j f = D_j D_i f$.

Proof. WLOG, n=2, m=1. Consider $\Delta_h=f(x+h,y+h)-f(x+h,y)-(f(x,y+h)-f(x,y))$. Use differentiability on each bracket and apply MVT. By similar argument can deduce two formula of Δ_h in terms of mixed partial. Let $h\to 0$.

Theorem 4.8 (Second order Taylor's theorem). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be twice differentiable, then

$$f(a+h) = f(a) + Df|_{a}(h) + \frac{1}{2}D^{2}f|_{a}(h,h) + o(\|h\|)^{2}$$

Proof. WLOG, m = 1. Define

$$\varphi_h(t) = f(a+th) - f(a) - tDf|_a(h) + \frac{t^2}{2}D^2f|_a(h,h)$$

Note that $\varphi_h(1) - \varphi_h(0)$ is the expression we want. Want to prove that this difference is $o(\|h\|^2)$, so apply MVT and use the definition of second derivative to manipulate.

Theorem 4.9 (Inverse function theorem). Let $f: \mathbb{R}^n \to \mathbb{R}^n$, $a \in \mathbb{R}^n$, and b = f(a). Suppose there exists ome open $nbd\ A$ of a s.t. f is continuously differentiable at every $x \in A$ and $Df|_a$ is non-singular. Then there are open $nbd\ U$ of a and V of b s.t. $f|_U: U \to V$ is a homeomorphism. Moreover, if $g: V \to U$ is the inverse, then g is continuously differentiable at all $y \in V$ with $Dg|_y = (Df|_x)^{-1}$, where y = f(x).

Proof. Step 0: Let $A = Df|_a$. For each $y \in \mathbb{R}^n$ define $\varphi_y(x) = x + A^{-1}(y - f(x))$. Can find $\lambda > 0$ s.t. $2\lambda \|A^{-1}\| = 1$. By continuity of derivative, can find an open ball U about a s.t. $\|A - Df|_x\| < \lambda$ for all $x \in U$.

Step 1: For each $y_0 = f(x_0) \in f(U)$, there exists $\delta > 0$ and $\eta > 0$ s.t. for all $y \in B_{\eta}(y_0)$, $\varphi_y|_{\overline{B_{\delta}(x_0)}}$ is a contraction mapping. First, note that on U, $D\varphi_y|_x = I - A^{-1} \circ Df|_x = A^{-1}(A - Df|_x)$. The norm of this thing is $\leq \lambda(1/2\lambda) = 1/2$ on U, so by mean value inequality, we have (for all $x_1, x_2 \in U$)

$$\|\varphi_y(x_1) - \varphi_y(x_2)\| \le \frac{1}{2} \|x_2 - x_1\|$$

This implies that φ_y can have at most one fixed point in U, i.e., f(x) = y has at most one solution for x in U. Second, pick $\delta > 0$ s.t. $\overline{B_{\delta}(x_0)} \subseteq U$, and let $\eta = \lambda \delta$. Now, for $x \in \overline{B_{\delta}(x_0)}$ and $y \in B_{\lambda \delta}(y_0)$,

$$\|\varphi_y(x) - x_0\| \le \|\varphi_y(x) - \varphi_y(x_0)\| + \|\varphi_y(x_0) - x_0\|$$

$$\le \frac{1}{2} \|x - x_0\| + \|A^{-1}\| \|y - y_0\| \le \frac{\delta}{2} + \frac{\lambda \delta}{2\lambda} = \delta$$

Contraction mapping theorem then implies that there exists a unique $x \in \overline{B_{\delta}(x_0)}$ s.t. f(x) = y. Also, we see that if $y_0 \in f(U)$, then $B_{\lambda\delta}(y_0) \subseteq f(U)$, i.e., f(U) is open. This shows that $f|_U : U \to f(U)$ is a continuous bijection from open set U to open set f(U).

Step 3: Let $g = (f|_U)^{-1}$. We wish to show that g is continuous. Let $y_1 = f(x_1)$, $y_2 = f(x_2)$ for some $x_1, x_2 \in U$. Note that for $y \in \mathbb{R}^n$

$$\frac{1}{2}||x_1 - x_2|| \ge ||\varphi_y(x_1) - \varphi(x_2)|| = ||x_1 - x_2 + A^{-1}(y_2 - y_1)|| \ge ||x_1 - x_2|| - ||A^{-1}(y_2 - y_1)||$$

Rearranging, get

$$||g(y_1) - g(y_2)|| = ||x_1 - x_2|| \le 2||A^{-1}(y_2 - y_1)|| \le 2||A^{-1}||||y_1 - y_2||$$

So g is continuous

5 Useful estimates/inequalities

• $e^x \ge x^n/n!$ for x > 0

6 Counterexamples

Example 1 (Pointwise limit of cts func being discontinuous). $f_n(x) = x^n$ on [0,1] OR $f_n(x) = (1-x^2)^n$ on [-1,1]

Example 2 (Limit of integral != integral of ptwise limit). Increasing spike.

Example 3 (Uniform limit of differentiable functions being non-differentiable). $f_n(x) = \sqrt{x^2 + 1/n}$ on [-1, 1]

Example 4. Uniform limit of differentiable functions being differentiable but the limit is incorrect $f_n(x) = \frac{x}{1 + nx^2}$, then $\lim f'_n(x) = f'(x)$ is true iff $x \neq 0$.

Example 5 (bounded but not totally bounded). Closed unit ball in l^2 .

Example 6 (Function on a Hausdorff space which preserve limits but is discontinuous).

Example 7 (Connected but not path-connected). $X = \{(x, \sin(1/x)) : x \in (0, 1]\} \cup \{(0, y) : y \in [0, 1]\}.$