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1 Basic stuff about holomorphic functions

Theorem 1.1 (Cauchy-Riemann equation). Let f : U — C be a function on an open set U C C. Then
flz+iy) = u(z,y) + iv(z,y) is holomorphic at z = ¢+ id € U with derivative p + iq if and only if u,v
are real differentiable at (¢,d) and they satisfy the Cauchy-Riemann equation, i.e.,

Uy = Uy
Uy = —Up

Remark 1. u,v are said to be harmonic conjugate to each other.

Proposition 1.2 (Conformality). If f : U — C is holo’c and f'(w) # 0, then f preserves angles at
z=a.

Proof. Take two paths 1,72 s.t. 71(0) = 12(0) = w. Have 0 = Arg(v5(0)) — Arg(~1(0)). f is angle
preserving because Arg(f o7;)'(0)) = Arg(v;(0)f'(w)) = Arg(v;(0)) + Arg(f'(w)) + 2nm. (valid since
f'(w) # 0 by assumption, so we have well-defined argument) O

2 Complex integrals

Theorem 2.1 (FTC). If f : U — C and U C C open, and there exists F on U s.t. F' = f, then for
any curve v : [0,1] = U,

/ f(2)dz = F(+(b)) - F(+(a))

Proof. Direct computation. In the final step split into real and imag part and use real analysis. O

Theorem 2.2 (Antiderivative thm (partial converse to FTC)). If f : D — C is continuous on a domain
D, and f,y f =0 for all closed curves, then f has a primitive on D.

Theorem 2.3 (Goursat’s theorem). f : U — C holo’c, U C C open, then fan = 0 for all triangles
TCU.

Proof. Pick some T C U (Note that T is closed and bounded hence compact). Let I = f@T f and
L = length(9T) Subdivide into T, ..., Ty using midpoints of edges, then the integral along the boundary
of one of them is > 1/41, call it T»). Subdivide T and construct 7® > 1/4 [, ., f > 1/161. Repeat
this process, we get a sequence

TM 7@ > .

We have length(T0)) < 2771, so diam(7W)) — 0 as j — oo. Claim (); 7®) # & (intersection of nested
sequence of compact sets). Choose w in this big intersection.

Let € > 0 be given. f is holo’c at w, so can pick 6 > 0 s.t. |f(2) — f(w) — (z — w) f'(w)] < €|z — w|
whenever |z — w| < d. Also, can pick N s.t. T C D(w,d) for all n > N (possible because diam goes

to zero).
4T < / f‘ - / (f(2) = f(w) = (= — w)f'(1))dz| < 27" Le sup | — w| < 47"
aT(n) oT(n) oT (™)
Rearrange. O

Proposition 2.4. Let S C U be a finite subset of a domain and f : U — C holomorphic away from S
and f is continuous on U, then for any triangle T C U, faT f=0.
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Proof. WLOG assume |S| = {a}. Pick some T'C U which contains a. By subdivision, can find smaller
T' s.t. a € T" C T, then Goursat implies [,. f = [, f. Estimate | [, f| < length(T”)sup,car [f(2)]-
The sup term is bounded by continuity, so RHS goes to 0 as T” shrinks. O

Theorem 2.5 (Cauchy’s theorem for convex/star-convex domain). If f : U — C is cts, and holo’c away
from finitely points, then fﬁ/ f =0 for any closed curves .

Proof. Antiderivative theorem for star-convex domain is true with weaker hypothesis: |, o J =0 for all
triangles T C U. (Proof exactly the same)

Preceding theorem shows that [, o / = 0 for any triangle T'. By antiderivative theorem for star-convex
comain, f has an antiderivative on U. Apply FTC. O

Theorem 2.6 (Cauchy integral formula on a disk (basic)). Let U C C be a domain. If f : U — C is
holo’c and D(a,r) C U, then for all z € D(a,r),

@ =g [ LW,

210 Jop(a) W — 2

Proof. By Cauchy’s theorem on a disk
[ fwoae,,
9D(a,r)

w—z

Have |w — a| =7 > |z — a|, so geometric expansion works.

I 1 B 1 B (z—a)"
w—2 w—a—(z—a) (w—a)(l-(z-a)/(w-—a)) _Z(w—a)”‘*‘1

Swap limit using uniform convergence. O

Corollary 2.7 (Mean value property).

1
fla) = /0 fla+re*™)dt

The proof is essentially by CIF.
Theorem 2.8 (Liouville’s theorem). Bounded entire functions are constant.

Proof. Pick some z # 0 and r > |z|.

1 1 1
=10 =g | [ ) (- )

N / f(w)
27 | Jpo,r) w(w — z)

< MQ?T’/‘ sup 7|f(w)|
27 lw|=r T|w — 2|

< sup |2M — 0
jw|=r [W — 2|

as r — o0. O

Theorem 2.9 (Generalization of Liouville (not covered)). Entire functions with sublinear growth are
constant.

The proof is entirely the same. Just replace M with bound of the form M (1+ |w|*), where € (0,1).

Theorem 2.10 (Fundamental theorem of algebra). If p(x) € C[z] is non-constant, then p(z) has a root
in C.

Proof. If p has no root, then consider ﬁ It’s entire and bounded (Use limit to bound everything
except on a closed disk, then use compactness). Contradicting Liouville. O
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Theorem 2.11 (local maximum (modulus) principle). Let f : D(a,r) — C be holo’c. If |f(2)] < |f(a)]
for all z € D(a,r), then f is constant on D(a,r).

Proof. Mean value property,

1

fla+pe?™)dt| < sup |f(a+ pe’™)| < f(a)
0 te[0,1]

()| =

for all 0 < p < r. Inequality must be equality, so | f| must be constantly equal to |f(a)l|, so f is constant
(C-R equation or Liouville). O

3 Expansions

Theorem 3.1 (Taylor series representation). f : D(a,r) — C holo’c Then f is represented by a conver-
gent power series on D(a,r)

f(z) = Z en(z—=a)", cn = f™(a)/n! = L ﬂdw

>0 211 dD(a,p) (’LU — a)”“

forany |z| < p <r.

Proof. Let |z—a| < p < r. Apply CIF for disks and geometric expansion (swap limit by unif convergence).
O

So holo’c functions are analytic.

Proposition 3.2 (CIF for derivatives). Let f be holo’c on U and D(a,r) C U. Then for all z € D(a,r),

f (Z) - 2mi /BD(a,r) (U) - Z)nJrl dw

Proof. By induction. Consider f(w)/(w — z)"*! and differentiate with respect to w. Use antiderivative

thm + induction hypothesis. O
Theorem 3.3 (Morera’s theorem). f:U — C. If f7 f =20 for all closed curves v, then f is holo’c on
U.

Proof. Antiderivative thm + analyticity. O

Theorem 3.4 (Laurent series representation). If f is holo’c on an annulus A= {z € C: r < |z—a| < R},
where 0 < r < R < 0o, then

e f has a unique convergent expansion (Laurent series) on A, namely

oo

f)= 3 eulz—a)"

n—=—oo

e for any r < p' < p < R, the Laurent series converges uniformly {p’ < |z — a| < p}.

e For any r < p < R, coefficients are given by

1
o = L )
270 Jop(a,p) (w—a)" Tt

Theorem 3.5 (Residue theorem). Let f be meromorphic in a domain D and v is a closed curve which

is homologous to 0 in D. Assume no poles of f lie on v and only finitely many poles at {ay,...,am} of
f has I(~y,a;) # 0, then

/f = 27riZI(’y; a;)Res,—q,; f(2)
¥ i=1



Proof. Subtract all principal parts from f, then the resulting function is holomorphic (has removable
singularities only) in the domain obtained by removing singularities with I(vy, a) # 0 (v is still homologous
to zero in this new domain). Apply Cauchy’s theorem (generalized version). O

Theorem 3.6 (Jordan’s lemma). Suppose f is holo’c for |z| > r for some r > 0 and assume that zf(z)
is bounded (Or simpler |f(z)| — 0 as |z| = o). Then for all « > 0, we have

(2)e'*dz — 0 as R — oo
Cr

Clis 7y : [0,m] — C,t — Re™. Similar statement holds for a < 0 and the semicircle on lower half-plane.

Proof. Symmetry of sin and Jordan’s inequality. O

4 Zeros and singularities

Theorem 4.1 (Principle of isolated zeros). Let f : D(a,r) — C be holo’c. f is not constantly 0. Then
there exists 0 < p <r s.t. f(z) #0 on D(a,p)*.

Proof. If f(a) # 0, then we are done by continuity. If f(a) = 0 and is a zero of some positive order,
then write f(z) = (z —a)™g(z) for some holo’c g s.t. g(a) # 0 (possible by Taylor series expansion). By
continuity of g, such punctured disk exists. O

Theorem 4.2 (Identity theorem). Let f, g be holo’c on the domain U. Define S = {z € U : f(z) = g(2)}.
If S has an accumulation point in U, then f(z) = g(2) for all z € U.

Proof. Let h = f —g. his holo’c on U and has a non-isolated zero at w iff w is an accumulation point
of S. Principle of isolated zeros implies that A = 0 on some D(w,€). By Taylor series representation,
h=0on any D(w,r) CU. Theset {z € U :3r > 0,h|p(.r) =0} is a non-empty open subset of U. It’s
complement is {z € U : Vr > 0,32’ € D(z,r), f(2') # 0} which is also open (the selection condition is
equivalent to f(™)(z) # 0 for some n). So by connectedness, the second set is empty, so h =0 on U. O

Corollary 4.3 (maximum modulus/global maximum). Let U be a bounded domain. If f : U — C is
continuous and f is holo’c on U, then the mazimum of |f| is attained in U \ U.

Proof. U is closed and bounded so compact. |f| attains max m in U. Suppose |f(29)| = m for some
zp € U, then local max principle implies that f is constant on some open disk about zg, then identity
theorem implies that f is constant on U, so f is constant on U by continuity, so f(z) = m for all
meU\U. O

Theorem 4.4 (Argument principle). Let v be a closed curve bounding a domain D, and let f be mero-
morphic on a nbd of yU D. If f has no zeros or poles on vy, then

I(fO’y,O):/fJ:dzz# of zeros in D — # of poles in D
v

(counted with multiplicities)

!/
Proof. First prove that if f is meromorphic with a zero (resp. a pole) of order k at z = a. Then, J} ((Z))
z
has a pole at z = a with residue k (resp. —k) by writing f(z) = (2 — a)*g(z), where g is holo’c and
g(a) # 0, then compute the residue. Then use residue theorem. O

Lemma 4.5 (Properties of winding number). 7 closed curve. w — I(y,w) is a locally constant map.

Proof. Sheet 3 Q10. First show that if 7,0 are two closed curves such that for all ¢, |v(t) — o(¢)| <
|v(t) — w|, then I(y,w) = I(o,w) by considering (y — w)/(c — w) about 0. Then use translational
symmetry to deduce that if v doesn’t meet D(w,€), then Vz € D(w,€), I(y,w) = I(v, 2). O

Theorem 4.6 (Local mapping degree). Let f : D(a, R) — C be holo’c and non-constant with local degree
k>0 at z = a. Then forr > 0 sufficiently small, there exists € > 0 s.t. 0 < |lw—f(a)| <e = w= f(z)
has k simple solutions.



Proof. By principle of isolated zero, can find r > 0 s.t. f(2) — f(a) # 0 and f'(2) # 0 on D(a,r) \ {a}.
Then f o~ doesn’t contain f(a), so can find D(f(a),€) that doesn’t intersect the image of f o~. For all
w € D(f(a),e), I(fovy,w)=1I(fo~, f(a)) =k [c.f. sheet 3 Q10(b)]. So w has k preimages. Since f’ # 0
on the punctured disk, they are all distinct. O

Corollary 4.7 (Open mapping theorem). Non-constant holo’c functions on a domain are open maps.

Proof. Local mapping degree theorem says that If r, e are sufficiently small, # preimages of w in D(a,r) =
deg,_, f(z) > 0 for all w € D(f(a),¢). In this situation, D(f(a),€) C f(D(a,T)). O

Theorem 4.8 (Rouche’s theorem). Let v bound a domain D, and f, g holo’c on a nbd of nbd. If |f| > |¢|
for all z € v, then f and f + g has the same number of zeros on D.

Proof. |f| > |g| on 7, so f and f + g are nowhere 0 on . Apply argument principle to h = (f +g)/f =
1+ g/f. We have |h—1| =|g/f] <1, s0 h(y) € D(1,1), so I(ho~,0) =0, so the number of zeros of h
equals the number of poles of i in D. This is precisely saying that the number of roots of f and f + g
are equal (counting multiplicities). O

Remark 2. Rouche’s theorem implies open mapping theorem

Proof. By principle of isolated zeros. Can find a sufficiently small » > 0 s.t. f(z)— f(a) # 0 on D(a,r)*.
Let 7 be the boundary of the disk, then |z—a| = r. Choose 0 < € < min{|f(z)—f(a)|}. WTS D(f(a),€) C
f(D(a,r)). Pick w € D(f(a),¢). Consider g(z) = f(z) —w. Then g(z) = f(z) — f(a) + f(a) — w. Since
|f(a) —w| < e<|f(z) — f(a)| on v, Rouche’s theorem implies that g(z) and f(z) — f(a) have the same
number of roots in D(a,r), which is > 1. Done. O

4.1 Classification of singularities

removable
isolated < poles
essential

non-isolated (essential) [include branch point sing (CM)]
The following theorem from sheet 2 is occasionally useful.

Theorem 4.9 (Casorati-Weierstrass). If f : D(a,r)* — C be a holo’c function which has an essential
singularity at a (so a is an isolated essential singularity), then

Vw € C,Ve > 0,V¥§ > 0,3z € D(a,d)" s.t. f(z) € D(w,e)

Proof. By contradiction (c.f. sheet 2 Q9). Suppose not, then there exists wy € C,eg > 0,59 > 0 s.t.
Vz € D(a,d0)*, |f(2) — wo| > €. Consider g(z) = 1/(f(z) — wp). g is bounded and holomorphic on
D(a,dp)*. Consider its Laurent expansion abour a. Boundedness implies that h(z) =Y -, cn(z —a)",
so f(z) =1/(3 cu(z —a)™) +b. By considering limit, we see that z = a is either a removable singularity
or a pole. Contradiction. O

5 Local uniform convergence

Proposition 5.1. (f, : U — C) is locally unif. conv. < (fn|x) is unif. conv. on any compact subset
KCU.

Proof. («<): Trivial. Find D(a,r) C U, then D(a,r/2) C U is compact. Use unif. conv. on compact
subsets.

(=): K C U compact. For each a € K, Ir, > 05s.t. f, conv. unif. on D(a,r,), then | ¢, D(a,rq) 2 K
so admits a finite subcover K C |J;_, D(a;, ;). Let € > 0 be given. For each i, there exists N; € N s.t.
n>N; = |fu(2) — f(2)| < e for all z € D(a;,7,,) Take N = max; N;. O

Theorem 5.2. Let (f,) be a seq. of holo’c functions on a domain U. Suppose f, — f loc. unif. on U,
then f is holo’c and f], — f' loc. unif.



Proof. Preceding theorem implies that f, — f unif. on any compact subset. So f is cts (gives in-
tegrability). Pick any a € U, and consider D(a,r) C U, then by unif. conv. on its closure, have
fﬂ/ f = lim, f,y fn = 0 (Cauchy’s thm). So f is holo’c on D(a,r) by Morera. So f is holo’c on U. Apply

CIF to derivatives
fu(2) = f(2)
——dz
/za—r (Z - w)2

1
o

[fr(w) = f(w)]

Choose |w — a| < r/2 (sufficiently small), then can bound the integral. Then use unif. conv. of (f,) on
compact subsets. O

Proposition 5.3. Let (f,,) be a seq of holo’c functions on a domain U. Suppose f, — f loc. unif. on
U. If f, is injective on U for all n then f is either injective or constant.

Proof. Suppose non-constant and non-injective, exists z1 # 2o s.t. f(21) = f(22) = a.

By connectedness of U, can construct a (simple) closed curve 4 which winds around z; once and 29
once. Since f is non-constant (it takes the value a at most finitely many time in the domain v bounds),
can choose v so that f(z) # a for all z € . By loc. unif. conv. the same is true for f, for sufficiently
large n. Apply argument principle

1 ! 1
[ B LS,
210 )y fn—a 2mi )y [ —a

contradiction! O

6 Counterexamples

7 Computation Techniques

7.1 Residue computation

1. Simple poles: If f(z) = g(z)/h(z), h has a simple zero at a and g holo’c nonzero at a, then
Res.—a(f) = g(a)/I(a).

2. Poles of order k: If f(z) = g(2)/(z — a)*, g holo’c and non-zero at a. Then Res,—,(f) = coeff of
(z —a)*! in g expansion = g*=Y(a)/(k — 1)

3. In general, need to compute Laurent expansion.

7.2 Basic estimates
7.3 Contour choices
7.4 Basic conformal equivalence
e linear map: rotation and scaling
e Power map: z — 2™, from sectors to sectors/half planes

e Mobius maps: Disk to disk and disk to half plane ((z —i)/(z + 4): upper half plane to unit disk)
[Can use Mobius maps on any region bounded by circles/lines.]

e Exponential/Log: horizontal strip to sectors/half planes (Some branch of log can be its inverse).
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