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1 Basic stuff about holomorphic functions

Theorem 1.1 (Cauchy-Riemann equation). Let f : U → C be a function on an open set U ⊆ C. Then
f(x+ iy) = u(x, y) + iv(x, y) is holomorphic at z = c+ id ∈ U with derivative p+ iq if and only if u, v
are real differentiable at (c, d) and they satisfy the Cauchy-Riemann equation, i.e.,{

ux = vy

uy = −vx

Remark 1. u, v are said to be harmonic conjugate to each other.

Proposition 1.2 (Conformality). If f : U → C is holo’c and f ′(w) ̸= 0, then f preserves angles at
z = a.

Proof. Take two paths γ1, γ2 s.t. γ1(0) = γ2(0) = w. Have θ = Arg(γ′
2(0)) − Arg(γ′

1(0)). f is angle
preserving because Arg(f ◦ γj)

′(0)) = Arg(γ′
j(0)f

′(w)) = Arg(γ′
j(0)) + Arg(f ′(w)) + 2nπ. (valid since

f ′(w) ̸= 0 by assumption, so we have well-defined argument)

2 Complex integrals

Theorem 2.1 (FTC). If f : U → C and U ⊆ C open, and there exists F on U s.t. F ′ = f , then for
any curve γ : [0, 1] → U , ∫

γ

f(z)dz = F (γ(b))− F (γ(a))

Proof. Direct computation. In the final step split into real and imag part and use real analysis.

Theorem 2.2 (Antiderivative thm (partial converse to FTC)). If f : D → C is continuous on a domain
D, and

∫
γ
f = 0 for all closed curves, then f has a primitive on D.

Theorem 2.3 (Goursat’s theorem). f : U → C holo’c, U ⊆ C open, then
∫
∂T

f = 0 for all triangles
T ⊆ U .

Proof. Pick some T ⊆ U (Note that T is closed and bounded hence compact). Let I =
∫
∂T

f and
L = length(∂T ) Subdivide into T1, ..., T4 using midpoints of edges, then the integral along the boundary
of one of them is ≥ 1/4I, call it T (1). Subdivide T (1) and construct T (2) ≥ 1/4

∫
∂T (1) f ≥ 1/16I. Repeat

this process, we get a sequence
T (1) ⊇ T (2) ⊇ . . .

We have length(T (j)) ≤ 2−jL, so diam(T (j)) → 0 as j → ∞. Claim
⋂

i T
(i) ̸= ∅ (intersection of nested

sequence of compact sets). Choose w in this big intersection.
Let ϵ > 0 be given. f is holo’c at w, so can pick δ > 0 s.t. |f(z) − f(w) − (z − w)f ′(w)| < ϵ|z − w|

whenever |z − w| < δ. Also, can pick N s.t. T (n) ⊆ D(w, δ) for all n ≥ N (possible because diam goes
to zero).

4−nI ≤
∣∣∣∣∫

∂T (n)

f

∣∣∣∣ = ∣∣∣∣∫
∂T (n)

(f(z)− f(w)− (z − w)f ′(w))dz

∣∣∣∣ ≤ 2−nLϵ sup
∂T (n)

|z − w| ≤ 4−nL2ϵ

Rearrange.

Proposition 2.4. Let S ⊆ U be a finite subset of a domain and f : U → C holomorphic away from S
and f is continuous on U , then for any triangle T ⊆ U ,

∫
∂T

f = 0.
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Proof. WLOG assume |S| = {a}. Pick some T ⊆ U which contains a. By subdivision, can find smaller
T ′ s.t. a ∈ T ′ ⊆ T , then Goursat implies

∫
T
f =

∫
T ′ f . Estimate |

∫
T ′ f | ≤ length(T ′) supz∈∂T ′ |f(z)|.

The sup term is bounded by continuity, so RHS goes to 0 as T ′ shrinks.

Theorem 2.5 (Cauchy’s theorem for convex/star-convex domain). If f : U → C is cts, and holo’c away
from finitely points, then

∫
γ
f = 0 for any closed curves γ.

Proof. Antiderivative theorem for star-convex domain is true with weaker hypothesis:
∫
∂T

f = 0 for all
triangles T ⊆ U . (Proof exactly the same)

Preceding theorem shows that
∫
∂T

f = 0 for any triangle T . By antiderivative theorem for star-convex
comain, f has an antiderivative on U . Apply FTC.

Theorem 2.6 (Cauchy integral formula on a disk (basic)). Let U ⊆ C be a domain. If f : U → C is
holo’c and D(a, r) ⊆ U , then for all z ∈ D(a, r),

f(z) =
1

2πi

∫
∂D(a,r)

f(w)

w − z
dw

Proof. By Cauchy’s theorem on a disk∫
∂D(a,r)

f(w)− f(z)

w − z
dw = 0

Have |w − a| = r > |z − a|, so geometric expansion works.

1

w − z
=

1

w − a− (z − a)
=

1

(w − a)(1− (z − a)/(w − a))
=

∑
n≥0

(z − a)n

(w − a)n+1

Swap limit using uniform convergence.

Corollary 2.7 (Mean value property).

f(a) =

∫ 1

0

f(a+ re2iπt)dt

The proof is essentially by CIF.

Theorem 2.8 (Liouville’s theorem). Bounded entire functions are constant.

Proof. Pick some z ̸= 0 and r > |z|.

|f(z)− f(0)| = 1

2π

∣∣∣∣∣
∫
D(0,r)

f(w)

(
1

w − z
− 1

w

)
dw

∣∣∣∣∣
=

|z|
2π

∣∣∣∣∣
∫
D(0,r)

f(w)

w(w − z)

∣∣∣∣∣
≤ |z|

2π
2πr sup

|w|=r

|f(w)|
r|w − z|

≤ sup
|w|=r

|z|M
|w − z|

→ 0

as r → ∞.

Theorem 2.9 (Generalization of Liouville (not covered)). Entire functions with sublinear growth are
constant.

The proof is entirely the same. Just replace M with bound of the form M(1+ |w|α), where α ∈ (0, 1).

Theorem 2.10 (Fundamental theorem of algebra). If p(x) ∈ C[x] is non-constant, then p(x) has a root
in C.

Proof. If p has no root, then consider 1
f(z) . It’s entire and bounded (Use limit to bound everything

except on a closed disk, then use compactness). Contradicting Liouville.
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Theorem 2.11 (local maximum (modulus) principle). Let f : D(a, r) → C be holo’c. If |f(z)| ≤ |f(a)|
for all z ∈ D(a, r), then f is constant on D(a, r).

Proof. Mean value property,

|f(a)| =
∣∣∣∣∫ 1

0

f(a+ ρe2πit)dt

∣∣∣∣ ≤ sup
t∈[0,1]

|f(a+ ρe2πit)| ≤ f(a)

for all 0 < ρ < r. Inequality must be equality, so |f | must be constantly equal to |f(a)|, so f is constant
(C-R equation or Liouville).

3 Expansions

Theorem 3.1 (Taylor series representation). f : D(a, r) → C holo’c Then f is represented by a conver-
gent power series on D(a, r)

f(z) =
∑
n≥0

cn(z − a)n, cn = f (n)(a)/n! =
1

2πi

∫
∂D(a,ρ)

f(w)

(w − a)n+1
dw

for any |z| < ρ < r.

Proof. Let |z−a| < ρ < r. Apply CIF for disks and geometric expansion (swap limit by unif convergence).

So holo’c functions are analytic.

Proposition 3.2 (CIF for derivatives). Let f be holo’c on U and D(a, r) ⊆ U . Then for all z ∈ D(a, r),

f (n)(z) =
n!

2πi

∫
∂D(a,r)

f(w)

(w − z)n+1
dw

Proof. By induction. Consider f(w)/(w − z)n+1 and differentiate with respect to w. Use antiderivative
thm + induction hypothesis.

Theorem 3.3 (Morera’s theorem). f : U → C. If
∫
γ
f = 0 for all closed curves γ, then f is holo’c on

U .

Proof. Antiderivative thm + analyticity.

Theorem 3.4 (Laurent series representation). If f is holo’c on an annulus A = {z ∈ C : r < |z−a| < R},
where 0 ≤ r < R ≤ ∞, then

• f has a unique convergent expansion (Laurent series) on A, namely

f(z) =

∞∑
n=−∞

cn(z − a)n

• for any r < ρ′ ≤ ρ < R, the Laurent series converges uniformly {ρ′ ≤ |z − a| ≤ ρ}.

• For any r < ρ < R, coefficients are given by

cn =
1

2πi

∫
∂D(a,ρ)

f(w)

(w − a)n+1
dw

Theorem 3.5 (Residue theorem). Let f be meromorphic in a domain D and γ is a closed curve which
is homologous to 0 in D. Assume no poles of f lie on γ and only finitely many poles at {a1, ..., am} of
f has I(γ, ai) ̸= 0, then ∫

γ

f = 2πi

m∑
i=1

I(γ; ai)Resz=ai
f(z)
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Proof. Subtract all principal parts from f , then the resulting function is holomorphic (has removable
singularities only) in the domain obtained by removing singularities with I(γ, a) ̸= 0 (γ is still homologous
to zero in this new domain). Apply Cauchy’s theorem (generalized version).

Theorem 3.6 (Jordan’s lemma). Suppose f is holo’c for |z| > r for some r > 0 and assume that zf(z)
is bounded (Or simpler |f(z)| → 0 as |z| → ∞). Then for all α > 0, we have∫

C′
R

f(z)eiαzdz → 0 as R → ∞

C ′
R is γ : [0, π] → C, t → Reit. Similar statement holds for α < 0 and the semicircle on lower half-plane.

Proof. Symmetry of sin and Jordan’s inequality.

4 Zeros and singularities

Theorem 4.1 (Principle of isolated zeros). Let f : D(a, r) → C be holo’c. f is not constantly 0. Then
there exists 0 < ρ < r s.t. f(z) ̸= 0 on D(a, ρ)∗.

Proof. If f(a) ̸= 0, then we are done by continuity. If f(a) = 0 and is a zero of some positive order,
then write f(z) = (z − a)mg(z) for some holo’c g s.t. g(a) ̸= 0 (possible by Taylor series expansion). By
continuity of g, such punctured disk exists.

Theorem 4.2 (Identity theorem). Let f, g be holo’c on the domain U . Define S = {z ∈ U : f(z) = g(z)}.
If S has an accumulation point in U , then f(z) = g(z) for all z ∈ U .

Proof. Let h = f − g. h is holo’c on U and has a non-isolated zero at w iff w is an accumulation point
of S. Principle of isolated zeros implies that h ≡ 0 on some D(w, ϵ). By Taylor series representation,
h ≡ 0 on any D(w, r) ⊆ U . The set {z ∈ U : ∃r > 0, h|D(z,r) ≡ 0} is a non-empty open subset of U . It’s
complement is {z ∈ U : ∀r > 0,∃z′ ∈ D(z, r), f(z′) ̸= 0} which is also open (the selection condition is
equivalent to f (n)(z) ̸= 0 for some n). So by connectedness, the second set is empty, so h ≡ 0 on U .

Corollary 4.3 (maximum modulus/global maximum). Let U be a bounded domain. If f : U → C is
continuous and f is holo’c on U , then the maximum of |f | is attained in U \ U .

Proof. U is closed and bounded so compact. |f | attains max m in U . Suppose |f(z0)| = m for some
z0 ∈ U , then local max principle implies that f is constant on some open disk about z0, then identity
theorem implies that f is constant on U , so f is constant on U by continuity, so f(z) = m for all
m ∈ U \ U .

Theorem 4.4 (Argument principle). Let γ be a closed curve bounding a domain D, and let f be mero-
morphic on a nbd of γ ∪D. If f has no zeros or poles on γ, then

I(f ◦ γ, 0) =
∫
γ

f ′

f
dz = # of zeros in D −# of poles in D

(counted with multiplicities)

Proof. First prove that if f is meromorphic with a zero (resp. a pole) of order k at z = a. Then,
f ′(z)

f(z)
has a pole at z = a with residue k (resp. −k) by writing f(z) = (z − a)kg(z), where g is holo’c and
g(a) ̸= 0, then compute the residue. Then use residue theorem.

Lemma 4.5 (Properties of winding number). γ closed curve. w 7→ I(γ,w) is a locally constant map.

Proof. Sheet 3 Q10. First show that if γ, σ are two closed curves such that for all t, |γ(t) − σ(t)| <
|γ(t) − w|, then I(γ,w) = I(σ,w) by considering (γ − w)/(σ − w) about 0. Then use translational
symmetry to deduce that if γ doesn’t meet D(w, ϵ), then ∀z ∈ D(w, ϵ), I(γ,w) = I(γ, z).

Theorem 4.6 (Local mapping degree). Let f : D(a,R) → C be holo’c and non-constant with local degree
k > 0 at z = a. Then for r > 0 sufficiently small, there exists ϵ > 0 s.t. 0 < |w−f(a)| < ϵ =⇒ w = f(z)
has k simple solutions.
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Proof. By principle of isolated zero, can find r > 0 s.t. f(z)− f(a) ̸= 0 and f ′(z) ̸= 0 on D(a, r) \ {a}.
Then f ◦ γ doesn’t contain f(a), so can find D(f(a), ϵ) that doesn’t intersect the image of f ◦ γ. For all
w ∈ D(f(a), ϵ), I(f ◦γ,w) = I(f ◦γ, f(a)) = k [c.f. sheet 3 Q10(b)]. So w has k preimages. Since f ′ ̸= 0
on the punctured disk, they are all distinct.

Corollary 4.7 (Open mapping theorem). Non-constant holo’c functions on a domain are open maps.

Proof. Local mapping degree theorem says that If r, ϵ are sufficiently small, # preimages of w in D(a, r) =
degz=a f(z) > 0 for all w ∈ D(f(a), ϵ). In this situation, D(f(a), ϵ) ⊆ f(D(a, r)).

Theorem 4.8 (Rouche’s theorem). Let γ bound a domain D, and f, g holo’c on a nbd of nbd. If |f | > |g|
for all z ∈ γ, then f and f + g has the same number of zeros on D.

Proof. |f | > |g| on γ, so f and f + g are nowhere 0 on γ. Apply argument principle to h = (f + g)/f =
1 + g/f . We have |h− 1| = |g/f | < 1, so h(γ) ∈ D(1, 1), so I(h ◦ γ, 0) = 0, so the number of zeros of h
equals the number of poles of h in D. This is precisely saying that the number of roots of f and f + g
are equal (counting multiplicities).

Remark 2. Rouche’s theorem implies open mapping theorem

Proof. By principle of isolated zeros. Can find a sufficiently small r > 0 s.t. f(z)− f(a) ̸= 0 on D(a, r)∗.
Let γ be the boundary of the disk, then |z−a| = r. Choose 0 < ϵ < min{|f(z)−f(a)|}. WTSD(f(a), ϵ) ⊆
f(D(a, r)). Pick w ∈ D(f(a), ϵ). Consider g(z) = f(z)− w. Then g(z) = f(z)− f(a) + f(a)− w. Since
|f(a)− w| < ϵ < |f(z)− f(a)| on γ, Rouche’s theorem implies that g(z) and f(z)− f(a) have the same
number of roots in D(a, r), which is ≥ 1. Done.

4.1 Classification of singularities
isolated


removable

poles

essential

non-isolated (essential) [include branch point sing (CM)]

The following theorem from sheet 2 is occasionally useful.

Theorem 4.9 (Casorati-Weierstrass). If f : D(a, r)∗ → C be a holo’c function which has an essential
singularity at a (so a is an isolated essential singularity), then

∀w ∈ C,∀ϵ > 0,∀δ > 0,∃z ∈ D(a, δ)∗ s.t. f(z) ∈ D(w, ϵ)

Proof. By contradiction (c.f. sheet 2 Q9). Suppose not, then there exists w0 ∈ C, ϵ0 > 0, δ0 > 0 s.t.
∀z ∈ D(a, δ0)

∗, |f(z) − w0| ≥ ϵ0. Consider g(z) = 1/(f(z) − w0). g is bounded and holomorphic on
D(a, δ0)

∗. Consider its Laurent expansion abour a. Boundedness implies that h(z) =
∑

n≥0 cn(z − a)n,
so f(z) = 1/(

∑
cn(z− a)n)+ b. By considering limit, we see that z = a is either a removable singularity

or a pole. Contradiction.

5 Local uniform convergence

Proposition 5.1. (fn : U → C) is locally unif. conv. ⇔ (fn|K) is unif. conv. on any compact subset
K ⊆ U .

Proof. (⇐): Trivial. Find D(a, r) ⊆ U , then D(a, r/2) ⊆ U is compact. Use unif. conv. on compact
subsets.
(⇒): K ⊆ U compact. For each a ∈ K, ∃ra > 0 s.t. fn conv. unif. on D(a, ra), then

⋃
a∈K D(a, ra) ⊇ K

so admits a finite subcover K ⊆
⋃n

i=1 D(ai, rai
). Let ϵ > 0 be given. For each i, there exists Ni ∈ N s.t.

n ≥ Ni =⇒ |fn(z)− f(z)| < ϵ for all z ∈ D(ai, rai) Take N = maxi Ni.

Theorem 5.2. Let (fn) be a seq. of holo’c functions on a domain U . Suppose fn → f loc. unif. on U ,
then f is holo’c and f ′

n → f ′ loc. unif.
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Proof. Preceding theorem implies that fn → f unif. on any compact subset. So f is cts (gives in-
tegrability). Pick any a ∈ U , and consider D(a, r) ⊆ U , then by unif. conv. on its closure, have∫
γ
f = limn

∫
γ
fn = 0 (Cauchy’s thm). So f is holo’c on D(a, r) by Morera. So f is holo’c on U . Apply

CIF to derivatives

|f ′
n(w)− f ′(w)| = 1

2π

∣∣∣∣∣
∫
|z−a|=r

fn(z)− f(z)

(z − w)2
dz

∣∣∣∣∣
Choose |w − a| < r/2 (sufficiently small), then can bound the integral. Then use unif. conv. of (fn) on
compact subsets.

Proposition 5.3. Let (fn) be a seq of holo’c functions on a domain U . Suppose fn → f loc. unif. on
U . If fn is injective on U for all n then f is either injective or constant.

Proof. Suppose non-constant and non-injective, exists z1 ̸= z2 s.t. f(z1) = f(z2) = a.
By connectedness of U , can construct a (simple) closed curve γ which winds around z1 once and z2

once. Since f is non-constant (it takes the value a at most finitely many time in the domain γ bounds),
can choose γ so that f(z) ̸= a for all z ∈ γ. By loc. unif. conv. the same is true for fn for sufficiently
large n. Apply argument principle

1 ≥ 1

2πi

∫
γ

f ′
n

fn − a
→ 1

2πi

∫
γ

f

f − a
≥ 2

contradiction!

6 Counterexamples

7 Computation Techniques

7.1 Residue computation

1. Simple poles: If f(z) = g(z)/h(z), h has a simple zero at a and g holo’c nonzero at a, then
Resz=a(f) = g(a)/h′(a).

2. Poles of order k: If f(z) = g(z)/(z − a)k, g holo’c and non-zero at a. Then Resz=a(f) = coeff of
(z − a)k−1 in g expansion = g(k−1)(a)/(k − 1)!.

3. In general, need to compute Laurent expansion.

7.2 Basic estimates

7.3 Contour choices

7.4 Basic conformal equivalence

• linear map: rotation and scaling

• Power map: z → zn, from sectors to sectors/half planes

• Mobius maps: Disk to disk and disk to half plane ((z − i)/(z + i): upper half plane to unit disk)
[Can use Mobius maps on any region bounded by circles/lines.]

• Exponential/Log: horizontal strip to sectors/half planes (Some branch of log can be its inverse).
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