
GRM

1 Groups

Lemma 1.1 (Subgroup correspondence). LetH ⊴ G then subgroups ofG/H is in bijective correspondence
with subgroups of G containing H. This specializes to a bijection between normal subgroups.

Theorem 1.2 (Isomorphism theorems). 1. f : G→ H homomorphism, im(f) ∼= G/ ker(f)

2. H ≤ G, K normal subgroup of G, Then HK ≤ G, H ∩ K normal subgrp of G and HK/K ∼=
H/(H ∩K)

3. K ≤ L ≤ G, K,L normal subgrps of G. (G/K)/(L/K) ∼= G/L

Proof. First isomorphism (well-definedness, bijectivity) Second isomorphism (first show that HK is a
subgroup, then consider ϕ : H → G/K, h 7→ hK. Image is HK/K kernel is H ∩K). Third iso Third
isomorphism theorem (define ϕ : G/K → G/L, gK 7→ gL)

Theorem 1.3. An is simple for n ≥ 5.

Proof. Step 1: An is generated by 3-cycles. Write (ab)(bc) = (abc) and (ab)(cd) = (acb)(acd)
Step 2: If H ⊴ An and H contains a 3-cycle, then H = G. Conjugate by σ ∈ Sn to move that

to (123) (WLOG), If σ ∈ An, then (123) is in An. If odd, then replace σ by σ · (45) (n ≥ 5) and use
commutativity of (45), (123). Can do the same for any other 3-cycle.

Step 3: If H ⊴ An and H ̸= {e} then H contains a 3-cycle.

• In disjoint cycle notation, (123 . . . r)τ (WLOG)

• (123)(456)τ

• (123)τ , whereτ is a product of disjoint transposition.

• (12)(34)τ , where τ is a product of disjoint transpositions.

Theorem 1.4. G finite group. H ≤ G of index n, then there exists a normal subgroup K ⊴ G s.t.
K ≤ H and |G/K| | n! and |G : K| ≥ n.

Proof. Let G act on [G : H] by left mult. This gives a hom ϕ : G→ Sn. kerϕ = ∩g∈GgHg
−1, which is a

normal subgroup of G contained in H. |G/K| | n! by 1st iso and Lagrange. |G : K| ≥ n as K ≤ H.

Corollary 1.5. If G is a non-abelian finite simple group, and H ≤ G is a subgroup of index n > 1, then
G is isomorphic to a subgroup of An, where n ≥ 5.

Proof. Left coset action is non-trivial, so kerϕ = {e} by simplicity, so G embeds in Sn, Compose with
the sign hom, deduce that G embeds in An (o/w get an index two subgrp). n ≥ 5 because S1, S2, S3, S4

have no non-abelian simple subgroups.

Proposition 1.6. Let G be a finite p-group (of order pa), then G has subgroups of order pb for all
0 ≤ b ≤ a.

Proof. Proceed by induction. Trivial if a = 1. Suppose true for all a < k. Note that by considering
conjugation action of G on itself, we see that Z(G) is non-trivial, so it contains an element g of order
p by Cauchy, so G has a (normal) subgroup of order p. Taking quotient, get a group of order pk−1.
Induction hypothesis says that G/⟨g⟩ contains subgroups of order pb for all 0 ≤ b ≤ k − 1. By subgroup
correspondence, each subgroup K corresponds to some subgroup of H ≤ G s.t. H/⟨g⟩ = K, so true for
a = k. Hence true for all a by strong induction.
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Theorem 1.7 (Sylow’s theorem). Let G be a finite group and p prime. Suppose pam = |G| and p ∤ m.

1. There exists a Sylow p-subgroup of G, i.e., Sylp(G) ̸= ∅;

2. All Sylow p-subgroups of G are conjugate to each other. (In fact all p-subgroups can be conjugated
into a Sylow p-subgroup);

3. Let np be the number of Sylow p-subgroups of G, then np ≡ 1 (mod p) and np | |G| (so np | m)

Proof. Let G act on the set of size pa subsets of G pointwise. Pick an orbit Σ, then |Sigma| ≥ |G|/pa = m
(for all g ∈ G there exists X ∈ Σ s.t. g ∈ X) If |Σ| = m, then its stabilizer is a Sylow p-subgroup. If all
orbits have size > m, then use Orbit-stabilizer to deduce that

p |
(
|G|
pa

)
=

pa−1∏
j=0

pam− j

pa − j

Note that each factor on RHS is not divisible by p, so contradiction. So there must be an orbit of size
m.

Pick a p-subgroup Q ≤ G, and let Q acts on the set of left cosets of a Sylow p-subgroup P . At least
one orbit has size 1 otherwise p divides |G : P | = m. so consider this orbit gP , then qgP = gP for all
q ∈ Q, this implies that qQg−1 ≤ P .

Sylow II says that the conjugation action of G on Sylp(G) is transitive so np | |G| by orbit-stabilizer.
Let P ∈ Sylp(G), let P act on Sylp(G) by conjugation. P has orbit size 1. If Q also has orbit size 1,
then P ≤ NG(Q), so P and Q are both Sylow p-subgroups of NG(Q), then Sylow II says P and Q are
conjugate, so P = Q. This means that precisely one orbit has size 1, so np ≡ 1 (mod p) as other orbits
must have size divisible by p by orbit-stabilizer.

Corollary 1.8. If np = 1 for some p, then the unique Sylow p-subgroup is normal.

Corollary 1.9. If G is a non-abelian simple group, then for all prime p | |G|, G embeds as a subgroup

of Anp (|G| | np!
2 ), and np ≥ 5 as A2, A3, A4 don’t contain non-abelian simple subgroups.

Proof. G acts on Sylp(G) by conjugation. Embeds in Snp
. Compose with sgn to show that the image

lies in Anp
.

Proposition 1.10 (Frattini argument). K ⊴ G, P is a Sylow p-subgroup of K. Then G = NG(P )K.

Proof. For all g ∈ G, g−1Pg is another Sylow p-subgroup of K (since K is normal). Sylow II implies
that k−1g−1Pgk = P for some k ∈ K, so gk = n ∈ NG(P ), so g = nk−1 ∈ NG(P )K. Hence G =
NG(P )K.

2 Rings

Proposition 2.1 (Subring/Ideal correspondence). Let I ⊴ R, then there is a a bijective correspondence
between subrings of R/I and subrings of R contianing I. This specializes to a bijection between ideals.

Theorem 2.2 (Isomorphism theorems). 1. ϕ : R→ S ring hom, then im(ϕ) ∼= R/ kerϕ.

2. R ≤ S, J ⊴ R, then (R+ J)/J ∼= R/(R ∩ J)

3. I, J ⊴ R, I ⊆ J , then (R/I)/(J/I) ∼= R/J .

Theorem 2.3 (Characterization of prime ideal and maximal ideal). I ⊴ R is maximal (resp. prime) if
R/I is a field (resp. ID).

Proof. If I is a maximal ideal then R/I has only two ideals (0), R/I by ideal correspondence, so R/I is
a field. Conversely if R/I is a field, it has two ideals, and by ideal correspondence I is maximal. If I is
a prime ideal, If ab ∈ I, then ab + I = 0 + I in R/I, then a + I = 0 + I or b + I = 0 + I, so a ∈ I or
b ∈ I.

Proposition 2.4. Let R be an ID. A principal ideal (p) is a prime ideal iff p is 0 or prime.

Proposition 2.5. In ID, prime =⇒ irreducible.

2



Proof. Let p be prime. Suppose p = ab for some a, b ∈ R. then p | ab, so p | a WLOG. so a = pr some
r ∈ R, so p = prb, so p(1 − rb) = 0, so 1 − rb = 0 as p = 0 and R is ID, so r, b are units. So p is
irreducible.

Proposition 2.6. In PID, irreducible =⇒ prime. (This is crucial in the proof of PID =⇒ UFD)

Proof. Let p be irreducible and suppose p | ab but p ∤ a. Then consider (p, a) = (m) ⊴ R, so a = rm,
p = sm. Either s or m is a unit. If s is a unit , then m = s−1p, then p | a (contradiction), so m must be
a unit, so (m) = R, so 1 = ak + pl, so b = abk + pbl and p divides RHS, so p | b.

Proposition 2.7. In UFD, irreducible =⇒ prime.

Proof. Let r be irreducible in some UFD R. Suppose r | ab, then sr = ab for some s ∈ R. Replace s, a, b
with their unique factorizations into irreducibles, then up to units r must appear as one of the factors
on RHS, so r is either a irreducible factor of a or b up to associates, so r | a or r | b.

Theorem 2.8. ED =⇒ PID, and PID =⇒ UFD.

Proof. ED =⇒ PID. Let I ⊴ R be an ideal. Pick an element r ∈ I with minimal non-zero euclidean
function value (by WOP). Apply division algorithm to show that everything in I is divisible by this
element. so I is principal.

PID =⇒ UFD. If R is a PID, then it is Noetherian. Given r ∈ R, if r cannot be factorized as
products of irreducibles then can write r = r1s1 with r1, s1 both non-units and r1 cannot be factorized
into irreducibles. Keep going. Write r1 = r2s2 with r2, s2 non-unit and r2 not irreducible. Get an
increasing chain of ideals

(r1) ⊆ (r2) ⊆ . . .

By Noetherian property, for all sufficiently large n, (rn) = (rn+1), so rn and rn+1 are associates, meaning
that rn must be irreducible.

To see uniqueness, suppose have two factorizations into irreducibles, then each irreducible is prime
so must divide something in the other factorization. Deduce uniqueness up to associates.

Theorem 2.9. In PID, TFAE

• p is prime

• p is irreducible

• (p) is maximal

• R/(p) is a field

• R/(p) is an ID

2.1 Polynomials

Proposition 2.10. If R is UFD, f, g primitive in R[X], then fg is primitive.

Proof. Suppose not. Take content and let p be a prime (irreducible) dividing c(fg). Write f = a0 +
a1X+...+anX

n, g = b0+b1X+...+bmX
m. Then ∃k ≥ 0 s.t. p | a0, ..., ak−1 but p ∤ ak and ∃l ≥ 0 s.t. p |

b0, ..., bl−1 but p ∤ bl. Check the coeff ofXk+l, which is a0b
k+l+...+ak−1bl+1+akbl+ak+1bl−1+...+a

k+lb0.
Note that p divides this coeff and all terms except akbl. Contradiction.

Corollary 2.11. Content is multiplicative up to associates.

Theorem 2.12 (Gauss’s lemma). Let R be a UFD, F its field of fractions. Let f ∈ R[X] be a primitive
polynomial. f is reducible in R[X] iff f is reducible in F [X].

Proof. If reducible in R[X], then obviously reducible in F [X]. Conversely if f = gh in F [X], then
can clear denominators by multipying a and b to get abf = (ag)(bh), ag ∈ R[X], bh ∈ R[X]. Have
ag = c(ag)g1 for some primitive g1 ∈ R[X] (similarly for bh). Take content,

ab = c(abf) = uc(ag)c(bh)

where u is a unit, so c(ag)c(bh) = u−1ab, so abf = u−1abg1h1, where g1, h1 are primitive. R is an ID, so
may cancel a, b and get f = u−1g1h1 which is a factorization over R.
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Proposition 2.13. Let R be a UFD, F its field of fractions. Let g ∈ R[X] be primitive. If J = (g) ⊴ R[x]
and I = (g) ⊴ F [X]. Then I ∩R[X] = J . Equivalently. If g divides f ∈ R[X] in F [X], then g divides f
in R[X].

Proof. Let f ∈ J . Write f = gh for some h ∈ F [X]. Clearing denominators, get bf = g(bh) where
bh ∈ R[X]. Taking contents, get c(bf) = uc(bh). Have c(bf) = bc(f). Write bh = c(bh)h1, where h1
is primitive, then bc(f) = uc(bh), so c(bh) = u−1bc(f), so bf = u−1bc(f)gh1 where h1 are primitive.
Cancel b as we’re in ID. f = g(u−1c(f)h1), so g divides f in R[X].

Theorem 2.14. R is a UFD =⇒ R[X] is a UFD. (The converse is also true)

Proof. By taking contents, it suffices to consider primitive polynomials since c(f) is a product of unique
irreducibles by unique factorization property in R. Take f ∈ R[X] primitive. If f is irreducible then
we are done. If not, then f = f1f2, where both factors are non-unit, hence non-constant. Hence we
strictly reduces degree. Repeat factorization for f1 and f2. This process eventually terminate as each
factorization strictly reduces degree. Hence eventually we must end up getting a product of irreducibles.

Uniqueness. Note that c(f) has unique factorization, so it suffices to deal with primitive polynomials.
Suppose f = p1...pn = qn....qn are two factorizations in R[X]. Consider these factorizations in F [X]
(ED hence PID hence UFD), so up to reordering, pi = uiqi for some unit ui ∈ F [X] (ui ∈ F ). (Apply
the preceding proposition, we are done.) Clearing denominators, aipi = biqi for some ai, bi ∈ R. Taking
contents, we see that ai = vibi for some unit vi ∈ R (as pi, qi are irreducible hence primitive). vibipi =
biqi =⇒ vipi = qi, i.e., unique up to associates.

Theorem 2.15. If R[X] is a PID, then R is a field. In general, if R is a PID, S is an ID, and ϕ : R→ S
is a surjective ring hom, then ϕ is either an iso or S is a field.

Proof. If R[X] is a PID, then R ≤ R[X] is an ID. Consider ϕ : R[X] → R, f(X) 7→ f(0). This is a
surjective ring hom, then R ∼= R[X]/ kerϕ is an ID, so kerϕ is a prime ideal, hence maximal (in a PID),
so R is a field.

Theorem 2.16 (Eisenstein’s criterion). Let R be a UFD and f = a0 + a1X + . . . + anX
n ∈ R[X] be

primitive. Let p be an irreducible (hence prime) s.t.

• p ∤ an

• p | ai for 0 ≤ i ≤ n− 1

• p2 ∤ a0.

Then f is irreducible in R[X] (hence in F [X] by Gauss).

Proof. Suppose we have a factorization f = gh in R[X], Write

g(X) = r0 + r1X + . . .+ rkX
k, h(X) = s0 + s1X + . . .+ slX

l

where rk, sk ̸= 0. p ∤ an implies p ∤ rk and p ∤ sl. p | a0 but p2 ∤ a0 implies that we may assume WLOG
p | r0 and p ∤ s0. Suppose p | r0, . . . , p | rj−1 and p ∤ rj for some 1 ≤ j ≤ n. Then

aj =

j∑
i=0

risj−i = r0sj + ...+ rj−1s1 + rjs0

Note that p divides everything on RHS except rjs0, so p ∤ aj , so j = n, so h is a constant polynomial. f
is primitive, so h is a unit, so f is irreducible.

Proposition 2.17. Let α be an algebraic integer. Consider ϕ : Z[X] → C f 7→ f(α), then ker(ϕ) is
principal and is generated by the minimal polynomial which is monic and irreducible.

Proof. Since α is an algebraic integer, the kernel is non-trivial and there exists a monic polynomial
that annihilates α. Choose a fα ∈ kerϕ of minimal positive degree. fα is primitive. Work over the
field of fraction Q. Let h ∈ kerϕ. By division algorithm, can find q, r ∈ Q[X] s.t. h = qfα + r,
where r = 0 or deg(r) < deg(fα). Clear denominators, ah = (aq)fα + ar. See that ar ∈ kerϕ and
deg r < deg fα, so r = 0, so ah = fα(aq). Taking content, c(ah) = ac(h) = uc(aq). So c(aq) = u−1ac(h),
so ah = fαu

−1ac(h)q1, where aq = c(aq)q1, q1 primitive. Cancelling a have fαu
−1c(h)q1 = h, so h ∈ (fα).

kerϕ = (fα) is a prime ideal as the image is an ID, so fα is prime hence irreducible.
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2.2 Noetherian stuff

Proposition 2.18. R is Noetherian ⇔ every ideal is finitely generated.

Proof. ⇐: Given an ascending chain of ideals, their union is an ideal, finitely generated, so the chain
eventually stabilizes.
⇒: Suppose I is not finitely generated. Construct an ascending chain. Pick a1 ∈ I and then a2 ∈ I \ (a1)
and so on. Get an ascending chain which does not stabilize.

Theorem 2.19 (Hilbert’s basis theorem). R is Noetherian =⇒ R[X] is Noetherian.

Proof. Let J ⊴ R[X]. Construct an ascending chain of ideals as in the proof of the preceding theorem
(BUT each time choose polynomial of minimal degree). If this process terminates then J is finitely
generated. Suppose this doesn’t terminate, then get an ascending chain of ideals

(f1) ⊆ (f1, f2) ⊆ (f1, f2, f3) ⊆ . . .

Consider the leading coefficients ai of fi. The chain (a1) ⊆ (a1, a2) ⊆ . . . eventually stabilizes by ACC, so
(a1, a2, a3, . . .) = (a1, a2, . . . , am). In particular, am+1 =

∑m
i=1 aibi, bi ∈ R. Now consider a polynomial

g ∈ J defined as follows.

g(X) =

m∑
i=1

bifiX
deg fm+1−deg fi

(Note that by construction fi is a polynomial of minimal degree in J \ (a1, . . . , ai−1), so g is indeed a
polynomial) Then fm+1 − g has degree strictly smaller than deg fm+1, and fm+1 − g ̸∈ (f1, . . . , fm),
but fm+1 has minimal degree in J \ (a1, . . . , am). Contradiction. So the chain must eventually termi-
nate/stabilize.

Proposition 2.20. Quotient ring of Noetherian ring is Noetherian.

Proof. Let R be Noetherian and I ⊴ R, Let J ⊴ R/I. By ideal correspondence, J corresponds to some
ideal I ⊆ J ′ ⊴ R. J ′ is finitely generated, so J is finitely generated in R/I.

3 Modules

Proposition 3.1 (Submodule correspondence). Let N ≤M be a submodule. Then submodules of M/N
are in bijective correspondence with submodules of M containing N .

Theorem 3.2 (Isomorphism theorems). 1. f :M → N R-mod hom then im f =M/ ker f .

2. A,B ≤M then A+B is a submodule of M and (A+B)/B ∼= A/(A ∩B).

3. N ≤ L ≤M , then (M/N)/(L/N) ∼=M/L.

Proposition 3.3. An R-mod M is finitely generated iff there is a epimorphism Rk →M for some k.

Definition 3.4 (Free generation). A subset S ⊆M is said to freely generate M if

• S generates M

• Any (set-theoretic) function ψ : S → N to an R-mod N uniquely extends to an R-mod hom
ψ̃ :M → N

Proposition 3.5 (Equivalent definitions of free generation). LetM be an R-mod and S = {m1,m2, . . . ,mk} ⊆
M . TFAE.

• S freely generates M ;

• S generates M and S is independent.

• Every element of M is uniquely expressible as an R-linear combination of things in S.

Proposition 3.6 (Invariance of dimension/rank). R non-zero ring. Rn ∼= Rm iff n = m.

Proof. Choose a maximal ideal I ⊴ Rn, then Rn/IRn ∼= (R/I)n is a R/I-vector space, so the given
R-mod iso induces an vector space iso (R/I)n ∼= (R/I)m. Apply stuff from LA.
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Proposition 3.7. Let M be an R-module. If N ≤ M and both N,M/N are f.g., then M is f.g. The
converse is true if R is Noetherian.

Proposition 3.8. Let M be an R-mod. If N ≤M and M/N is free, then M ∼= N ⊕M/N .

Proof. Split SES N ↪→M →M/N .

Theorem 3.9 (Smith normal form). Let R be an ED. Every matrix with coeff in R is equivalent to a
diag(d1, . . . , dr, 0, . . . , 0) s.t. d1 | d2 | . . . | dr (and all non-zero).

Proof. If the matrix is 0 then done. Otherwise there is a non-zero entry. Apply row/col operation to
move that to (1, 1) position. Look at stuff in the first row if there is anything not divisible by 11 entry
then apply euclidean algorithm to reduce the euclidean func and move that remainder to 11 entry. This
eventually terminates so we can then clear out the first row. Similarly, can clear out the first column.
Then will get a submatrix C. If there is any entry in C that’s not divisible by 11 entry, apply euclidean
algo and move that to 11 entry. This messes up the first row and column, so repeat the preceding steps.
Each step strictly reduces the norm of the 11 entry, so this process eventually stops. Apply this process
recursively to submatrices. Eventually will get a matrix in SNF.

Lemma 3.10. R PID. Any submodule of Rm is generated by at most m elements.

Proof. Let N ≤ Rm. Consider the ideal

I = {r ∈ R : ∃r2, . . . , rm ∈ R, (r, r2, r3, . . . , rm) ∈ N}

This is generated by some element a ∈ R (PID) and (a, a2, . . . , am) ∈ N . Pick an arbitrary (r1, . . . , rm) ∈
N , then r1 = ra, so subtracting gives (r1, r2, . . . , rm)− r(a, a2, . . . , am) = (0, r2 − ra2, . . . , rm − ram) ∈
N ∩ ({0} × Rm−1) ≤ N . Apply induction. Base case is trivial. R is a PID, so any submodule of R
(ideals) are generated by a single element.

Proposition 3.11. Let R be an ED and N ≤ Rm. Then there exists a basis v1, . . . , vm of Rm s.t. N is
generated by d1v1, . . . , drvr for some r ≤ m and d1 | d2 | . . . | dr

Proof. Pick a generating set of N given by u1, . . . , un, n ≤ m. Write down the matrix A = (u1 u2 . . . un)
each ui is a column vector. Put it in SNF. Column operations change basis for N . Row operations change
basis for Rm. So the resulting invariant factors give the new coordinates of generators of N in the new
basis of Rm.

Theorem 3.12 (Classification of finitely generated modules over ED). Let R be an ED. Let M be a
finitely generated R-module. Then

M ∼= R/(d1)⊕R/(d2)⊕ . . .⊕R/(dr)⊕R⊕R⊕ . . .⊕R

where d1 | d2 | d3 | . . . | dr.

Proof. M is f.g., so there is a surjective hom ϕ : Rn → M , so M ∼= Rn/ kerϕ. kerϕ is a submodule of
M , so by preceding proposition, can find a basis of M such that d1v2, . . . drvr is a basis for kerϕ. Then
M ∼= Rn/⟨d1v1, d2v2, . . . , drvr⟩ ∼= R/(d1)⊕ . . .⊕R/(dr)⊕Rm.

Theorem 3.13 (Primary decomposition theorem). Let R be an ED. Suppose M is a f.g. R-mod, then

M ∼= N1 ⊕N2 ⊕ . . .⊕Nk

where Ni
∼= R or Ni

∼= R/(pn) for some prime p ∈ R and n ≥ 1.

Proof. Apply CRT to the classification theorem
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3.1 Matrices

Let V be an F-vector space, then can make V an F[X]-mod Vα by using the action f(x) · v = f(α)(v),
where α ∈ L(V, V ).

Theorem 3.14 (Rational canonical form). Let α : V → V be an endomorphism of a finite dim F-vector
space. Then as an F[X]-module, we have

Vα ∼=
F[X]

(f1)
⊕ . . .⊕ F[X]

(fr)

such that f1 | f2 | . . . | fr. Thus there exists a basis such that α is block-diagonal, and each block is the
companion matrix for fi.

Proof. Apply classification theorem for finitely generated F[X]-modules. Note that V is finite dim, so
we can’t have free factors.

Theorem 3.15 (Jordan normal form). Let V be a finite dimensional C-vector space and α ∈ L(V, V ).
Then the associated C[X]-module has the form

Vα ∼=
C[X]

((X − λ1)n1)
⊕ . . .⊕ C[X]

((X − λk)nk)

Thus there is a basis of V in which α is in JNF.

Proof. Apply primary decomposition theorem, noting that the only primes in C[X] are linear polynomi-
als.

Proposition 3.16. Two endomorphisms α ∈ L(V, V ) β ∈ L(W,W ). Vα ∼= Wβ as F [X]-modules if and
only if there exists a linear isomorphism γ : V →W s.t. γ−1βγ = α.

Proof. Let ϕ be the module iso and γ its underlying linear iso. Look at the action of X.

ϕ(α(v)) = ϕ(Xv) = Xϕ(v) = β(ϕ(v))

i.e., γα = βγ. Conversely, if such γ exists, then after making things into F [X]-mod, it becomes a module
iso.

3.2 Noetherian stuff

An R-moduleM is Noetherian iff every ascending chain of submodules eventually stabilizes (equivalently
every submodule is finitely generated).

Proposition 3.17. If R is a Noetherian ring, then Rn is Noetherian as an R-module.

Proof. R is Noetherian as a ring so it is also Noetherian as an R-module. Proceed by induction. Define
an ideal

I = {r ∈ R : ∃r2, . . . , rn, (r, r2, ..., rn) ∈ N}

Then since R is Noetherian, I is finitely generated, say I = (a1, a2, ..., ak). Then can find a2j , . . . , anj s.t.
(aj , a2j , ..., anj) ∈ N . Consider an arbitrary element x = (r1, . . . , rn) ∈ N , then r1 ∈ I, so can be written
as an R-linear combination of aj , so there exists an element in m ∈ I s.t. x−m ∈ N ′ = N∩({0}×Rn−1).
N ′ is a submodule of Rn−1 so must be finitely generated by induction hypothesis. This implies (direct
sum) that N is finitely generated.

Proposition 3.18. Quotient of Noetherian module is Noetherian

Proof. M is Noetherian and N ≤ M , then By correspondence, submodules of M/N are in bijective
correspondence with submodules of M containing N , so if N ′ ≤ M/N , then N ′ corresponds to Ñ ≤ M
containing N , so is generated by finitely many things, then since the quotient map is surjective, N ′ is
generated by finitely many cosets.

Proposition 3.19. If R is a Noetherian ring, then any finitely generated R-module M is Noetherian.

Proof. There is a surjective homomorphism Rn →M , and the result follows from preceding propositions
and first isomorphism theorem.

7



4 Counterexamples

F ⊆ ED ⊆ PID ⊆ UFD ⊆ ID

PID =⇒ Noetherian

Example 1 (ID but not UFD). Z[
√
−5]. 2 is irreducible but not prime, so “irreducible” does NOT

imply “prime”, hence Z[
√
−5] is not a UFD.

Example 2 (UFD but not PID). Z[X]. Z is UFD so Z[X] is UFD. (2, X) is not principal.

Example 3 (PID but not ED). Probably not in the course?? Some ring of integers of field extension
should work.

Example 4 (ED but not field). Z

Example 5 (UFD but not Noetherian). Let F be a field, then F [X1, X2, . . .] is UFD because any
polynomial lies in the subring F [Xi1 , . . . , Xik ] and observe that any factorization of f must happen in
this subring which is an ED. Not Noetherian because (X1, . . .) is not finitely generated.

Example 6 (Noetherian but not PID). Z[
√
−5]. Not UFD. Z[

√
−5] ∼= Z[X]/(X2+5) is a quotient ring

of a Noetherian ring so Z[
√
−5] is Noetherian.

Example 7. R = Z, then R is a PID, but R[X] is not a PID.

Example 8. Subring of ED/PID/UFD need not be ED/PID/UFD, but subring of ID is ID.
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