
Geo

1 Embedded surfaces

Theorem 1.1 (Implicit function theorem). Let T ⊆ Rk+l be an open subset (use coordinate (x, z), where
x ∈ Rk, z ∈ Rl). Let p = (a, b) ∈ f−1(0) ⊆ T If det(∂zj∂fi) ̸= 0, then there exists open nbd A of a in Rk

and B of b in Rl and smooth F : A→ B s.t. A×B ⊆ T and f−1(0) ∩ (A×B) = {(x, F (x)) : x ∈ A}.

Proof. Define g(x, z) = (x, f(x, z)). Then compute the derivative, which is invertible, so by IFT Find
T, V s.t. g : T → V is a diffeo with g(p) = (a, 0). Inverse is given by H(u, v) = (u,H(u, v)) Restrict to
U = V ∩ Rk × {0}, get h(u, 0) = (u, F (u)), where F is a smooth map U → Rl. Pick A,B (nbd of a, b)
sufficiently small s.t. A×B ⊆ T . Shrink A if necessary, may assume that A ⊆ F−1(B), then F : A→ B
is the desired smooth map. Can check (x, z) ∈ F−1(0) iff g(x, z) = (x, 0) iff (x, z) = h(x, 0) = (x, F (x))
iff z = F (x).

Theorem 1.2 (Equivalent definitions of smoothly embedded surfaces). Let Σ ⊆ R3. Σ is a smoothly
embedded surface if one of the following equivalent conditions holds.

• ∀p ∈ Σ, ∃ open nbd T of p in R3 and a smooth function f : T → R s.t. Σ ∩ T = f−1(0) and Dpf
is non-zeo.

• ∀p ∈ Σ, ∃ open nbd T of p in R3 and W of 0 and diffeo g : T →W s.t. g(Σ∩T ) =W ∩ (R2×{0}).

• ∀p ∈ Σ, there is a parametrization of Σ near p, i.e., there is an open nbd U of p in Σ and open
V ⊆ R2 and a homeomorphism σ : V → U that is smooth as a map to R3 for all q ∈ V .

• Σ is locally a graph over a coordinate plane. (Essentially implicit function theorem)

Proposition 1.3 (Change of coordinate). σ(u, v) and τ(x, y) parametrizations, then write ψ = σ−1 ◦ τ ,
i.e., ψ(x, y) = (u(x, y), v(x, y)), then (expand by chain rule)

(
τx τy

)
=

(
σu σv

)(ux uy
vx vy

)
Definition 1.4 (Gauss map and orientability).

n⃗(p) =
σu × σv
∥σu × σv∥

A smooth surface is orientable if it admits a global Gauss map.

Proposition 1.5. A smooth surface is orientable iff it can be covered by a collection of parametrizations
{σα : α ∈ I} s.t. all transition functions ψαβ = σ−1

α ◦ σβ are orientation preserving, i.e., detDψαβ > 0

Proof.

1.1 Fundamental forms

Definition 1.6 (FFF). Family of inner product Ip of tangent space obtained by restricting the standard
inner product of R3.

Proposition 1.7. In parametrization σ(u, v), Can express FFF as a symmetric bilinear form Edu2 +
2Fdudv +Gdv2, where E = σu · σu, F = σu · σv and G = σv · σv.

Proof. Evaluate at basis vectors σu and σv.
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Definition 1.8 (Pullback). Smooth map H : Σ1 → Σ2 between embedded surfaces. Let σ(u, v) be a
parametrization of H near p. The pullback of FFF via H is given (in components) by (H ◦σ)u ·(H ◦σ)u =
Hu ·Hu... (similarly for v)..

Definition 1.9 (SFF). Let H : Σ → TpΣ be the orthogonal projection, then by direct computation, H
is a local diffeo at p so has a smooth inverse H−1 defined on an open nbd W of 0 in TpΣ. Then there is a
unique f :W → R s.t. H−1(w) = p+ w + f(w)n(p) and f(0) = 0, D0f = 0. Then IIp is the symmetric
bilinear form on TpΣ given by the Hessian of f . Given a choice of Gauss map on some U ⊆ Σ, SFF is
the family IIp.

Lemma 1.10. Existence and uniqueness of f :W → R.

Proof. Define e : W → R3 w 7→ H−1(w) − (p + w). By IFT D0e = 0. Consider the orthogonal
projection π : R3 → TpΣ, then π(e(w)) = π(H−1(w)) − π(p) − π(w) = w − w = 0, so e(w) ⊥ TpΣ, so
e(w) = f(w)n(p). Clearly f(0) = 0 and D0f = 0 (D0e = 0).

Proposition 1.11. Given a parametrization σ(u, v), can express SFF as Ldu2+2Mdudv+Ndv2, where
L = σuu · n, M = σuv · n, and N = σvv · n.

Proof.

Definition 1.12 (Gaussian curvature). Fix a Gauss map n : U → S2, then Dpn is an endomorphism of
TpΣ. Define (Gaussian curvature) K(p) = detDpn.

Proposition 1.13. Dpn is self-adjoint (wrt Ip). Moreover, Ip(·, Dpn(·)) = −IIp.

Proof. Suffices to check the basis vectors of TpΣ. Direct computation,

σu ·Dpn(σv) = σu · (n ◦ σ)v = (σu · n)v − (σuv · n) = −M

Similarly expand Dpn(σu) · σv and use commutativity of mixed partial.

Corollary 1.14. K =
LN −M2

EG− F 2

Proof. Write down the matrices and take det.

1.2 Geodesics

Definition 1.15 (Geodesics). A geodesic in Σ is a path γ : I → Σ defined on an open/closed interval
s.t. ∀t ∈ I, γ̈(t) ⊥ Tγ(t)Σ and γ is non-constant.

Theorem 1.16 (Geodesic equations). A curve γ(t) = σ(u(t), v(t)) is a geodesic iff{
(Eu̇+ F v̇)• = 1

2Euu̇
2 + Fuu̇v̇ +

1
2Guv̇

2

(Fu̇+ Ev̇)• = 1
2Evu̇

2 + Fvu̇v̇ +
1
2Gv v̇

2

Proof. Expand the condition γ̈ ⊥ σu and γ̈ ⊥ σv. (Differentiate by MVC). Alternatively, apply E-L
equation to the energy functional.

Corollary 1.17. If γ is a geodesic on Σ, then γ has constant speed, i.e., ∥γ̇∥ is constant.

Proof. Differentiate, (γ̇ · γ̇)• = 2γ̈ · γ̇ = 0 by definition as γ̇(t) ∈ Tγ(t)Σ.

Definition 1.18 (Energy). γ : [t0, t1] → Σ. Energy(γ) =
∫ t1
t0
Iγ(t)(γ̇(t), γ̇(t))dt

Proposition 1.19. γ is a geodesic iff it’s a staionary point of energy among paths with fixed end-points,
i.e., for all one-parameter variation Γ(s, t) with Γ(s, t0) = γ(t0) and Γ(s, t1) = γ(t1), dE/ds(0) = 0

Proof. only if part is easy. IBP on E ′(0) and use the fact that γ̈(t) ⊥ Tγ(t)Σ. Conversely, need to use
bump function (probably not required to know)

Proposition 1.20. γ is a geodesic iff it’s a stationary point of length functional and has constant speed.
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Proof. Apply E-L equation to the length functinoal and relate that to the energy functional (square
root).

Proposition 1.21. Local isometry preserves geodesics

Proof. (Sheet 3 Q2)

Theorem 1.22 ((Local) existence and uniqueness).

Proof. Picard-Lindelöf.

2 Topological and smooth surfaces

Definition 2.1. A topological manifold is a second-countable, Hausdorff, locally Euclidean topological
space.

Lemma 2.2. Let X be a topological space that is locally Euclidean. Then

• X is connected iff it’s path-connected;

• X is second countable iff it’s Lindelöf;

• X is Hausdorff iff it’s regular (points and closed sets can be separated by disjoint open sets)

Proof. (Sheet 3 Q5)

Definition 2.3 (Free and proper group action). An action of a group G ≤ Homeo(X) on a top. space
X is free and proper if

• For all p ∈ X, there exists open nbd U of p such that gU ∩ U = ∅ for all e ̸= g ∈ G.

• For p1, p2 in distinct orbits, there exists open nbd Ui of pi s.t. gU1 ∩ gU2 = ∅ for all g ∈ G.

Proposition 2.4. If Σ is a top. surface with a free and proper action by G ≤ Homeo(X), then Σ/G is
a top. surface (equipped with quotient topology).

Proof. Important: q : Σ → Σ/G is an open map. Check that q−1(q(T )) =
⋃

g∈G gT open for each T ⊆ Σ
open, then by defn of quotient topology, q(T ) is open in Σ/G.

Locally euclidean: Pick a chart of p ∈ Σ, say φ′ : U ′ → V ′. Pick another open nbd U ′′ s.t.
gU ′′ ∩ U ′′ = ∅ Let U = U ′ ∩ U ′′. Then prove that q|U is a homeo (clearly cts and surj, assume not inj,
then two distinct pts are related by an element g ∈ G, but by construction g = e is forced, so they are
actually the same). Compose, get a chart on Σ/G.

Hausdorff: Use free and properness to choose separating nbd of two points (in distinct orbits) and
pass to the orbit space (q is open).

Lindelof: Σ is second countable hence Lindelof, pass to the image (q is cts) and use the fact that
Σ/G is locally Euclidean to deduce that Σ/G is also second countable.

Definition 2.5 (Smooth surface). A smooth surface is a top. surface equipped with a smooth structure
(an atlas s.t. transition functions are diffeo)

Orientable if admits a smooth atlas s.t. all transition func ψ satisfy detDψ > 0.

Definition 2.6 (Smooth map). A map between smooth surfaces is smooth if it’s cts (this is crucial)
and ϕ2 ◦ F ◦ ϕ−1

1 is smooth.

Proposition 2.7. If a group G acts freely and properly on a smooth surface Σ by diffeo, then Σ/G is a
smooth surface.

Proof. Transition functions are of the form T = ϕ2 ◦ q|−1
U2

◦ q|U1 ◦ ϕ−1
1 : W1 → W2. Pick p ∈ W1,

then T (p) = gp for some g, then Consider any p′ ∈ W1 ∩ g−1W2 (open nbd of p), then T (p′) = g′p,
have g′p ∈ W2 and g′p ∈ g′g−1W2, so W2 ∩ g′g−1W2 ̸= ∅, but W2 is a subset of the domain of some
chart, which is chosen so that it doesn’t intersect its non-trivial translation, so g′g−1 = e. So T acts on
W1 ∩ g−1W2 by translation which is smooth, so the transition function is smooth.
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3 Riemannian geometry

Definition 3.1 (Generalization of section 1). • Riemannian metric: smooth family of symmetric
bilinear form s.t. it’s positive definite at each point.

• Geodesics: a smooth path that satisfies the geodesic equation (equivalently, stationary pt of energy
functional under one-parameter variations fixing end pts)

• Pullback (of a Riemannian metric): Let H : (Σ1, g1) → (Σ2, g2) be a smooth map between Rie-
mannian 2-manifolds (surfaces). The pullback H∗g2 is defined in each chart ϕ1 on Σ1 as follows.
Pick a chart ϕ2 on Σ2 then the components A,B,C of the pullback in ϕ1 is given by(

A B
B C

)
ϕ1(p)

= (Dϕ1(p)ψ)
T

(
E2 F2

F2 G2

)
ϕ2(p)

(Dϕ1(p)ψ)

where ψ = ϕ2 ◦H ◦ ϕ−1
1 .

Proposition 3.2. Local isometry iff conformal and area-preserving.

Proposition 3.3. If G acts freely and properly by isometry on (Σ, g), then there is a unique Riemannian
metric on Σ/G s.t. the quotient map is a local isometry.

Proof. For any chart ϕ : U → V of Σ, define components of the Riemannian metric on Σ/G on the chart
ϕ◦ q|−1

U to be the same as g in ϕ. This is the unique choice making q a local isometry. It suffices to prove
that this satisfies the transformation law. Start from the transformation law on Σ. Transition on Σ is
ψ = ϕ2 ◦ ϕ−1

1 and transition on Σ/G is ψ̄ = (ϕ2 ◦ q|−1
U2

) ◦ (ϕ1 ◦ q|−1
U1

)−1. They are related by

ψ = ψ̄ ◦ χ

where χ := ϕ1 ◦ (q|−1
U1

◦ q|U2
) ◦ ϕ−1

1 . The thing in the middle of χ is T , which acts by some elements g
so is an isometry by assumption, so apply chain rule and transformation law on Σ, we get the desired
result.

Definition 3.4 (Triangulation). Stuff related to triangulation

• Smooth triangle is a smooth embedding of a closed triangle in R2 into some Riemannian surface.

• A smooth triangulation of Σ is a collection of smooth triangles covering Σ such that the intersection
of two of them is either empty or a common face (edge or vertex).

• A geodesic triangle is a smooth triangle such that the edges are geodesics (up to reparametrization).
Can define geodesic polygons similarly.

• A geodesic triangulation is a smooth triangulation such that each smooth triangle is a geodesic
triangle.

Theorem 3.5 (Gauss-Bonnet). For all smooth triangulation of Σ, have
∫
Σ
KdA = 2πχ(Σ)

Theorem 3.6 (Gauss-Bonnet for geodesic n-gon). Let (T, f) be a geodesic n-gon, then
∫
f(T )

KdA =

2π −
∑

exterior angles

4 Hyperbolic geometry

Some important groups

• MH , Mobius maps of the form az+b
cz+d where a, b, c, d ∈ R and ad− bc > 0

• MD, Mobius maps of the form eiα z−a
āz−1 , where α ∈ R, |a| < 1

Definition 4.1. Upper half plane model: equipped with

gH =
dx2 + dy2

y2
=

|dz|2

Im(z)2
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Definition 4.2. Disk model: equipped with

gD =
4(dx2 + dy2)

(1− x2 − y2)2
=

4|dz|2

(1− |z|2)2

This is defined so that the Mobius map z 7→ z−i
z+i is an isometry from H to D.

Proposition 4.3. MH acts on H by isometry

Proof. Check generators z 7→ az, z 7→ z + c and z → −1/z. The first two are straightforward; the last
one is almost trivial with complex coord.

Proposition 4.4. MD acts on D by isometry.

Proof.

Lemma 4.5. If ϕ ∈ Isom(D), ϕ(0) = 0, and D0ϕ = id, then ϕ = id.

Lemma 4.6. If ϕ ∈ Isom(H), ϕ(i) = i, and Diϕ = id, then ϕ = id.

Proposition 4.7. MH = Isom+(H) and MD = Isom+(D).

Proof. Let Σ(u, v) = (u, v) be the obvious parametrization.
Clearly MD ⊆ Isom+(D), Conversely, if ϕ ∈ Isom+(D), then by composing with z 7→ (z −

ϕ(0))/(ϕ(0)z − 1) if necessary, can assume WLOG that ϕ(0) = 0. Now D0ϕ is an automorphism of
R2. Since ϕ is an orientation-preserving isometry, D0ϕ is orthogonal and have determinant +1, so by
applying a rotation if necessary, we may assume that D0ϕ fixes σu, then orientation forces D0ϕ = id,
then ϕ = id by preceding lemma, so ϕ ∈ MD. Done.

Can use similar argument on Diφ for φ ∈ Isom+(H). Alternatively conjugate using the map z 7→
(z − i)/(z + i) and work in D.

Proposition 4.8. Isom(D) is generated by Isom+(D) and z 7→ z̄; Isom(H) is generated by Isom+(H)
and z 7→ −z̄.

Proof. The last step gives two choices for the image of the second basis vector, so compose with the
orientation reversing map if necessary.

5 Calculation

Example 1 (Surface of revolution). σ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)), then σu = (f ′(u) cos(v), f ′(u) sin(v), g′(u))
and σv = (−f(u) sin(v), f(u) cos(v), 0). So FFF is

(f ′2 + g′2)du2 + f2dv2

Gauss map

n⃗ =
(g′ cos v, g sin v,−f ′)√

f ′2 + g′2

SFF
1√

f ′2 + g′2
[(f ′′g′ − f ′g′′)du2 − fg′dv2]

Gaussian curvature

κ =
g′(g′′f ′ − g′f ′′)

f(f ′2 + g′2)2

Geodesic equations (assume unit speed parametrization):

Definition 5.1 (Cross ratio).

[z1, z2; z3, z4] =

(
z3 − z1
z3 − z2

)/(
z4 − z1
z4 − z2

)
=

(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
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