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1 Basic stuff about vector spaces

Lemma 1.1 (Steinitz Exchange lemma). Let V be a vector space. Suppose {v1, . . . , vm} is a linearly
independent set and {w1, . . . , wn} spans V , then

• m ≤ n

• up to reordering, {v1, . . . , vm, wm+1, . . . , wn} spans V

Proof. Proceed by induction. Suppose {v1, . . . , vl, wl+1, . . . , wn} spans V , then

vl+1 =
∑
j>l

λjwj +
∑

j<l+1

µjvj

By linear independence of {vi}mi=1, there exists at least one λj ̸= 0. Up to reordering, assume λl+1 ̸= 0,
then wl+1 ∈ span({v1, . . . , vl+1, wl+2, . . . , wn}), so {v1, . . . , vl+1, wl+2, . . . , wn} spans V . The base case
is simple.

v1 =
∑
j

λjwj

where λ1 ̸= 0 up to reordering, so can swap in v1.
Ifm > n, then the preceding argument shows that {v1, . . . , vn} spans V , but then vn+1 ∈ span({v1, . . . , vn})

contradicting linear independence.

This allows basis extension for vector spaces that has a finite spanning set: take a linear independent
set and apply Steinitz exchange lemma to a finite spanning set.

Proposition 1.2 (Inclusion Exclusion of dimension). Let U,W ≤ V be finite dimensional subspaces.

dim(U +W ) = dimU + dimW − dim(U ∩W )

Proof. If U ∩W = {0}, then U +W = U ⊕W and the result follows. Otherwise, take a basis of U ∩W .
Extend. Prove that the union of the two extended bases form a basis of U +W . Count.

2 Linear maps and matrices

Definition 2.1 (Elementary row and column operations). Recall elementary matrices. Row operations
by left multiplication, column operations by right multiplication.

Theorem 2.2 (Rank-nullity theorem). Let V be a finite dimensional vector. Let W be a vector space.
Suppose α : V →W is a lienar map, then

dimV = r(α) + n(α)

Proof. Several strategies

• Basis extension (construct a basis for kerα and extend)

• As a corollary of first isomorphism theorem

• elementary operations (equivalent matrices), slightly complicated when W has infinite dimension.

1



Theorem 2.3 (Change of basis). B,B′ bases of V . C,C ′ bases of W

[α]B′,C′ = [idW ]C,C′ [α]B,C [idV ]B′,B

How to find [idV ]B,B′? Suppose B = {v1, . . . , vn}, B′ = {v′1, . . . , v′n}. Have pij = ([v′j ]B)i, or in matrix
notation, P = ([v′1]B [v′2]B . . . [v′n]B) = [idV ]B′,B. If [v]B′ = ajv

′
j, then [v]B = ajpijvi = (pijaj)vi. This

is exactly P applied to [v]B′ .

Proposition 2.4 (Properties of det and tr). .

• det is multiplicative, invariant under similarity transformation;

• tr is linear, and tr(AB) = tr(BA), and hence invariant under similarity transformation

We restrict our attention to finite dimensional vector space in the discussion of endomorphisms.

Theorem 2.5 (Triangularization criterion). α ∈ L(V, V ) is triangulable (can be made upper triangular
in some basis) iff χα(t) factorizes as (not necessarily distinct) lienar factors.

Proof. “only if ” is obvious. “if” direction: find an eigenvalue (exist by factorization); construct a
basis for the corresponding eigenspace; extend and then α is block upper triangular. Quotient out the
eigenspace, and apply strong induction. (Apply properties of det of block upper triangular matrix to
split char polynomial and apply strong induction to the smaller block?)

Therefore complex matrices are always triangulable.

Theorem 2.6 (Diagonalization criterion). α ∈ L(V, V ) is diagonalizable iff there exists a polynomial
p(x) ∈ F [x] such that p(α) = 0 and p(x) factorizes as distinct linear factors (cannot have double roots...)
Over C, TFAE,

• α is diagonalizable;

• cλ = 1 for all eigenvalues λ, where cλ is the exponent of (t− λ) in mα(t).

• gλ = aλ (geometric multiplicity = algebraic multiplicity) for all eigenvalues.

Proof. If diagonalizable, then take (x−λ1) · · · (x−λk), where λi are distinct eigenvalues (distinct diagonal
entries).

If such polynomial exists, say p(t) =
∏k

i=1(t− µi) =
∑

i cit
i, then µi are distinct eigenvalues. If v is

an eigenvector, then 0 = p(α)v =
∑

i ciλ
iv, so λ = µi for some i by considering roots. It’s enough to

show that V =
⊕

i Vµi
(decompose as the direct sum of eigenspaces).

Define pi(t) =
∏

j ̸=i(t− µj), hi(t) =
1

pi(µi)

∏
j ̸=i(t− µj), so hi(µj) = δij and

∑
i hi(µj) = 1 for all j.

But
∑

i hi is a polynomial of degree at most k − 1, so it must be constantly 1.
Define πi = hi(α), then πi(V ) ≤ Vµi

and
∑

i πi = idV , so V ≤
⊕

i Vµi
, and the result is obvious.

Theorem 2.7 (Simultaneous diagonalization). Suppose α, β ∈ L(V, V ) are diagonalizable. They are
simultaneously diagonalizable iff αβ = βα (they commute).

Proof. If simul diag, then obviously commute. Suppose commute. α is diagonalizable so V =
⊕

λ Vλ. If
v ∈ Vλ, then αβv = βαv = λβv, so β(v) is an e-vector of α with e-value λ, so β(Vλ) ≤ Vλ, so it suffices
to look at how β acts on each eigenspace Vλ. Since β is diagonalizable, β restricted to each eigenspace
Vλ is still diagonalizable. For each λ, choose a basis of Vλ such that β|Vλ

is diagonal. The union is an
eigenbasis of α and β, so under this basis α and β are both diagonal.

Theorem 2.8 (Cayley-Hamilton theorem). Let V be a finite dimensional, α ∈ L(V, V ) χα(α) = 0

Proof. In C, α is triangulable, so χα(x) is in terms of diagonal entries. Compute χα(α)(v) for all v ∈ V .
In general field, consider adj(tI−A). Let B = tI−A, then detB = χA(t) = tn+an−1t

n−1+...+a1t+a0
and adj(B) = Bn−1t

n−1+Bn−2t
n−2+...+B0. Have (tI−A)(Bn−1t

n−1+...+B0) = B adj(B) = det(B)I =
(tn + ...+ a0)I. Match coefficient, and substitute t = A, will get a telescoping series which gives 0.

Theorem 2.9 (Jordan normal form). c.f. GRM, every matrix can be written in JNF

• (algebraic multiplicity) aλ = the sum of the sizes of all Jordan block with e-value λ;

• (geometric multiplicity) gλ = the number of Jordan blocks with e-value λ

• cλ = the size of the largest Jordan block with e-value λ.
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2.1 Dual spaces

Proposition 2.10 (Canonical embedding). Let V be a vector space (not necessarily finite dim), then
i : V ↪→ V ∗∗, v 7→ v̂, where v̂(ϵ) = ϵ(v) for ϵ ∈ V ∗.

For finite dimensional vector space, i is the canonical isomorphism.

3 Bilinear forms

Definition 3.1. ϕ : U × V → F (U , V are vector spaces over F ) is a bilinear form if it’s linear in both
argument.

Q : V → F is a quadratic form if

1. Q(λv) = λ2Q(v) for all λ ∈ F , v ∈ V ;

2. the map (u, v) 7→ Q(u+ v)−Q(u)−Q(v) is bilinear. (related to polarization identity)

(When F = C, we say ϕ : U × V → C is a sesquilinear form if it’s linear in the first argument and
conjugate-linear in the second.)

ϕ is Hermitian if it’s sequilinear and ϕ(u, v) = ϕ(v, u)∗.

The analog of Q satisfies Q(λv) = |λ|2Q(v).

Proposition 3.2 (Polarization identity). For symmetric bilinear form ψ, we have

2ψ(u, v) = Q(u+ v)−Q(u)−Q(v)

(If 2 is invertible in F , then this identity specifies ψ uniquely)
For Hermitian forms

ψ(u, v) =
1

4
[Q(u+ v) + iQ(u+ iv)−Q(u− v)− iQ(u− iv)]

See sheet 4 for a more general version of polarization identity.

Theorem 3.3 (change of basis). Bilinear forms:

[ϕ]B′ = PT [ϕ]BP = [idV ]
T
B′,B [ϕ]B [idV ]B′,B

For bilinear form pij = ([v′j ]B)i, meaning that v′j = pijvi then if [v]B′ = ajv
′
j, then [v]B = ajpijvi, so

ϕ(v′j , v
′
m) = ϕ(pijvi, pnmvm) = pijϕ(vi, vn)pnm

For sesquilinear forms:
[ϕ]B′ = PT [ϕ]BP

∗

Same derivation but complex conjugate when pulling things out from the second argument.

Theorem 3.4 (Diagonalization of symmetric bilinear form). Let V be a finite dimensional vector space
of F , and let ψ : V × V → F be a symmetric bilinear form, then there exists a basis B of V s.t. [ψ]B is
diagonal. (Every symmetric matrix is congruent to a diagonal matrix)

Proof. Proceed by induction on n = dimV . If ψ(u, u) = 0 for all u ∈ V , then the matrix is trivial by
polarization identity. Otherwise, choose w ∈ V s.t. ψ(w,w) ̸= 0. We must have V = ⟨w⟩⊕ ⟨w⟩⊥. To see
this, write v = λw + (v − λw), then

ψ(w, v − λw) = ψ(w, v)− λψ(w,w)

meaning that we can choose λ ∈ F s.t. RHS vanishes (ψ(w,w) ̸= 0 by construction so this is possible).
Use induction hypothesis to find a basis for ⟨w⟩⊥ s.t. ψ|⟨w⟩⊥ is diagonal.

Over R, can normalize and reorder so that

[ψ]B =

Ip −Iq
0


Over C, the result of quadratic form is quite trivial (by including i in normalization, you get an identity
submatrix on the top left and 0 elsewhere).
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Theorem 3.5 (Diagonalization of Hermitian form). V finite dim vect space over C. ψ Hermitian form.
There exists a basis where [ψ]B is Ip −Iq

0


The proof is identical to the previous one.

Theorem 3.6 (Sylvester’s law of inertia). Let V be a finite dimensional vector space over R. Let
ψ : V × V → R be a bilinear form, then the signature of ψ is well-defined.

If instead V is a finite dimensional vector space over C and ψ is a Hermitian form, then the analogous
notion of signature is also well-defined for ψ(u, u) = Q(u).

Proof. Suppose

[ψ]B =

Ip0 −Iq
0

 , [ψ]B̃ =

Ip̃ −Iq̃
0


Let P (resp. N) be the subspace on which [ψ]B is positive definite (resp. negative semidefinite),
P̃ the subspace on which [ψ]B̃ is positive definite, then P̃ ⊕ N ≤ V = P ⊕ N , which implies that

dimP + dimN = dimV ≥ dim P̃ + dimN , which implies that p ≥ p′. Reversing the roles of the two
matrices shows that p ≤ p′, so we must have p = p̃. Similar argument shows that q = q̃.

4 Inner product space

Theorem 4.1 (Gram-Schmidt). If we have a sequence (vi)i∈I , I = {1, 2, ...} (which may or may not
terminate) of linearly independent vectors in an inner product space V , then there exists a sequence
(ei)i∈I of orthonormal vectors such that ⟨e1, . . . , ek⟩ = ⟨v1, . . . , vk⟩ for any k ∈ I.

Proof. Let e1 = v1/∥v1∥, and

e′i+1 = vi+1 −
i∑

j=1

⟨vj , ej⟩ej , ei+1 = e′i+1/∥e′i+1∥

Can show that ei+1 ̸= 0 by linear independence of (vi), and ⟨e1, . . . , ek⟩ = ⟨v1, . . . , vk⟩ is obvious.

Remark 1. Gram-Schmidt can be used to diagonalize quadratic forms (not necessarily positive definite).

Theorem 4.2 (Spectral theorems for self-adjoint operators in finite dimensions). Let V be an inner
product space over R or C, and let α ∈ L(V, V ) be a self-adjoint operator, then V has an orthonormal
basis of eigenvectors of α.

Proof. Take a real eigenvalue and an eigenvector v, then ⟨v⟩⊕ ⟨v⟩⊥ = V and α(⟨v⟩⊥) ≤ ⟨v⟩⊥. To see the
latter, note that if u ⊥ v, then ⟨α(u), v⟩ = ⟨u, α(v)⟩ = λ∗⟨u, v⟩ = 0. Apply induction hypothesis to find
an orthonormal basis of e-vectors in ⟨v⟩⊥ and take union.

Theorem 4.3 (Spectral theorems for unitary operators in finite dimensions). V inner product space
over C. α ∈ L(V ) unitary. V has an orthonormal basis of eigenvectors of α.

The proof is similar. Just note that eigenvalues have unit modulus and this implies orthogonality of
e-vectors with different e-values.

Theorem 4.4 (Spectral theorem for normal operators). V inner product space over C If α ∈ L(V ) is
normal, then V has an orthonormal basis of eigenvectors of α.

Proof. Conjugates of eigenvalues of α are precisely eigenvalues of α∗. Eigenvectors corresponding to
different e-values are orthogonal. Im(α − λI) ⊥ ker(α − λI). ker(α − λI)2 = ker(α − λI) So JNF is
diagonal. Apply Gram-Schmidt to find orthonormal basis for each eigenspace and take union.

Proof. Induction: Pick an e-vector v of e-value λ, and consider V = ⟨v⟩ ⊕ ⟨v⟩⊥. α(⟨v⟩⊥) ≤ ⟨v⟩⊥ (direct
computation). Apply induction hypothesis to find a basis of e-vectors in ⟨v⟩⊥.
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Theorem 4.5 (Simultaneous diagonalization). Let V be a finite dim vect space over F = R (resp. C).
Let ϕ, ψ : V × V → F be symmetric bilinear (resp. Hermitian) forms. If ϕ is positive definite then there
exists a basis B s.t. [ϕ]B and [ψ]B are diagonal.

Proof. There exists a basis such that [ϕ]C = I (by positive definiteness). [ψ]C is some symmetric (resp.
Hermitian) matrix. Use orthogonal (resp. unitary) transformation to diagonalize ψ, then [ϕ]B will still
be the identity matrix, which is diagonal.

5 Computation techniques

• Complete the square for quadratic forms (Lagrange method). If the quadratic term appears, then
go as far as you can (put things in a square), reduce the form to n− 1 variables. If only the cross
term appear, say aijxixj , aij ̸= 0 but aii = ajj = 0, then consider

1

2aij

(∑
k

(aik + ajk)xk

)2

− 1

2aij

(∑
k

(aik − ajk)xk

)2

This will eliminate both xi and xj from the expression thereby reducing the form to n−2 variables.
Repeat these two steps until you have completed the square.

• Dual basis. [idV ]B′,B = P , then [idV ∗ ]B′∗,B∗ = [idV ]
T
B,B′ = ([idV ]

−1
B′,B)

T , so the change of basis

matrix in the dual basis is (P−1)T , so if ([v′j ]B)i = Pij , then ([v′∗j ]B)i = (P−1)ji.

• Eigenvalues/Eigenvectors (decomposition as direct sum); generalized eigenspaces. Sheet 2 Q11 is
useful: If idV =

∑
i πi and πiπj = 0 if i ̸= j, then V =

⊕
i Im(πi).
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