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1 Motivating Examples and Introduction

\ : (Owen’s signature)

Consider f(x, y) = x2 + y2 − 1 over R. Roots of f : unit circle.

• 1-dim manifold

• smooth

• irreducible

Algebraically, consider the quotient ring R[x, y]/I, where I = (x2 + y2 − 1).

• transcendence degree 1 over R.

• localizations are independent of choices

• I is a prime ideal

Example 1.1. xn + yn = zn over Z. (no non-trivial solutions when n ≥ 3) Assume n = 2. Can identify
(not a bijective correspondence) the solution sets with {(x, y) ∈ Q2 : x2 + y2 = 1}. Consider the line
Lt : y = tx+ 1. Lt meets the circle at (−2t/(1 + t2), (1− t2)/(1 + t2)). In Q2, if t ∈ Q, then

t↔
(
−2t
1 + t2

,
1− t2

1 + t2

)
is a fully algebraic identification of the solution set with the base field.

Remark 1. Care about intersections.

Example 1.2. FTA. The set of zeros of a polynomial over C is {(z, y) = (z, p(z)) : z ∈ C} ∩ {(z, y) :
y = 0} ⊆ C2.

Definition 1.3. Let L/k be a field extension. We say x ∈ L is algebraic over k if there exists a non-zero
px ∈ k[z] s.. px(x) = 0. Otherwise, x is transcendental over k. Say L/k is algebraic if all elemnts of L
are algebraic over k

Recall that every field k has a (unique up to iso) maximal algebraic extension k̄, its algebraic closure.
In this course, we work over an algebraically closed field of characteristic 0.

1.1 The Projective Plane

FTA predicts that every two lines in a plane intersect at a point, unless they are parallel.

Definition 1.4. The projective plane: P2
k = P2 = {(x, y, z) ∈ k3 \ {(0, 0, 0)}}/{(x, y, z) ∼ λ(x, y, z), λ ̸=

0}.

Denote [(x, y, z)] = (x : y : z). We have an inclusion k2 ↪→ P2
k, (x, y) 7→ (x : y : 1). The points at

infinity are {(x : y : 0)} ⊆ P2
k.

A line ax + by − c = 0 in k2 dosen’t have well-defined solution set in P2, but its homogenization
ax+ by + cz = 0 does.
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Definition 1.5. A projective plane curve is

{(x : y : z) ∈ P2 : F (x, y, z) = 0}

for some non-zero homogeneous poly F .

If f ∈ k[x, y], then zdeg ff(x/z, y/z) = F (x, y, z) is homogeneous of the same degree.

Definition 1.6. If C = {f(x, y) = 0} ⊆ k2 and F is the homogenization of f , we say that {(x : y : z) ∈
P2 : F (x, y, z) = 0} is the projective closure of C in P2.

2 Affine Varieties

Definition 2.1. Affine n-space over k is the set An
k = kn. A polynomial f(x1, ..., xn) ∈ k[x1, ..., xn]

is also a function An → k. The zero set (vanishing locus) of a subset S ⊆ k[x1, ..., xn] is the set
Z(S) = {P ∈ An : ∀f ∈ S, f(P ) = 0}. An affine algebraic set is any subset of some An of the form Z(S)
for some S ⊆ k[x1, ..., xn].

Definition 2.2. If f ∈ k[x1, ..., xn] is a non-constant polynoimal, then Z(f) is a hypersurface. In
particular, if f is linear, Z(f) is a hyperplane.

Example 2.3. The twisted cubic is {(t, t2, t3) ∈ A3 : t ∈ k} = Z(t − x2, z − x3).It is non-planar (not
contained in any hyperplane).

Proposition 2.4. Let S ⊆ k[x1, ..., xn] be a set of polys. Then

(i) Z(S) = Z((S)), where (S) ⊴ k[x1, ..., xn] is the ideal generated by S.

(ii) There exists f1, ..., fr ∈ S s.t. Z(S) = Z(f1, ..., fr).

Proof. (i) is trivial. (ii) follows from k[x1, ..., xn] being Noetherian.

Proposition 2.5. Affine algebraic sets satisfy

(i) S ⊆ T ⊆ k[x1, ..., xn] =⇒ Z(T ) ⊆ Z(S).

(ii) An,∅ are affine algebriac sets.

(iii) Given a collection {Si}i∈I of subsets of k[x1, ..., xn],
⋂

i∈I Z(Si) = Z(
⋃

i∈I S).

(iv) If S, T ⊆ k[x1, ..., xn] are finite, then Z(S) ∪ Z(T ) = Z(ST ).

Proof. (i)-(iii) clear. (iv) by direct calculation.

Definition 2.6. The Zariski topology on A is the topology whose closed sets are affine algebraic subsets.
This is indeed a topology by preceding proposition.

Definition 2.7. A distinguished open set in An is any set An \ Z(f) for a single f .

Note that Zariski topology is very coarse. The intersection of two non-empty open sets is non-empty
and dense. Will prove in ES1 that distinguished open sets form a basis of Zariski topology. (Also on
ES1) The Zariski topology on a product is the the product of Zariski topology. If X ∈ An is affine
algebraic, then the subspace topology agrees with the Zariski topology on X.

Definition 2.8. A topological space X is irreducible if X is cannot be written as X = X1 ∪ X2 with
X1, X2 closed and proper. Otherwise, X is reducible.

e.g. Z(xy) is reducible.

Definition 2.9. An affine variety is an irreducible (w.r.t. Zariski topology) affine algebraic set.

If f ∈ k[x1, ..., xn] is irreducible then Z(f) is irreducible.
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3 Ideals and the Nullstellensatz

Definition 3.1. X ⊆ An. The ideal of X is I(X) = {f ∈ k[x1, ..., xn] : ∀P ∈ X, f(P ) = 0}
Proposition 3.2 (Properties of I(X) for X algebraic). Let X,Y be affine algebraic sets in An.

(1) If S ⊆ k[x1, ..., xn], then S ⊆ I(Z(S));

(2) X = Z(I(X))

(3) X = Y iff I(X) = I(Y ).

(4) X ⊆ Y iff I(Y ) ⊆ I(X)

Proof. (1) clear from defn.
(2) Clearly X ⊆ Z(I(X)). Conversely, write X = Z(S), so S ⊆ I(X), so Z(I(X)) ⊆ Z(S) = X.
(3) follows from (2).
(4). If X ⊆ Y , then I(Y ) ⊆ I(X) by defn. Conversely, if P ∈ X \ Y , then (2) implies that

P ̸∈ Z(I(Y )), so there exists f ∈ I(Y ) with f(P ) ̸= 0.

Proposition 3.3. Any affine algebraic set is a finite union (unique up to ordering, ES1) of irred. affine
algebraic sets (varieties).

Proof. Let X be affine algebraic. Suppose X is reducible (otherwise done), i.e., X = X1 ∪X ′
1. If X is

not a finite union of varieties, then wlog X1 is not a finite union of varieties. We can write X1 = X2∪X ′
2

s.t. X2 fails to be a finite union of varieties. Continue, get a descending chain of affine alg sets. By the
preceding prop, get an ACC in k[x1, ..., xn], which eventually stabilizes, i.e., eventually Xn is a finite
union of varieties.

Get maps Z(·), I(·)

{affine alg subsets of An} X↔I(X)←→ {I ⊴ k[x1, ..., xn]}

I(·) does not have full image, e.g., (x2).

Proposition 3.4. X ⊆ An affine alg set. Then X is irreducible iff I(X) is a prime ideal.

Proof. Suppose X is reducible, write X = X1 ∪X2 proper closed. Then I(X) = I(X1) ∩ I(X2). By (3)
of the previous proposition, there exists f ∈ I(X1) \ I(X2) and g ∈ I(X2) \ I(X1). Then fg ∈ I(X) but
f, g ̸∈ I(X), so I(X) is not prime.

Conversely, if I(X) is not prime, then can find f, g ̸∈ I(X) but fg ∈ I(X). Define X1 = X ∩ Z(f)
and X2 = X ∩ Z(g). These are proper closed subsets and X1 ∪X2 = X, so X is reducible.

Theorem 3.5 (Weak Nullstellensatz). The maximal ideals of k[x1, ..., xn] are those of the form (x1 −
a1, x2 − a2, ..., xn − an) for some (a1, ..., an) ∈ kn.

Proof postponed.

Corollary 3.6 (Weak Nullstellensatz). If I ⊊ k[x1, ..., xn] is a proper ideal, then Z(I) ̸= ∅.

Proof. Any proper ideal is contained in a maximal ideal which has the form (x1 − a1, ..., xn − an) = m,
so (a1, ..., an) ∈ Z(m).

Definition 3.7. Let I ⊴ k[x1, ..., xn]. The radical ideal of I is
√
I = {f ∈ k[x1, ..., xn] : ∃m > 0, fm ∈ I}.

Note that I ⊆
√
I and Z(I) = Z(

√
I).

Theorem 3.8 (Hilbert’s Nullstellensatz). Let J ⊴ k[x1, ..., xn]. Then
√
J = I(Z(J)).

Proof. By defn,
√
J ⊆ I(Z(J)).

Write J = (f1, ..., fr) and let g ∈ I(Z(J)). Define another ideal J̃ = (f1, ..., fr, xn+1g(x1, ..., xn)−1) ⊴
k[x1, ..., xn+1]. If P̃ ∈ Z(J̃), then the projection P to the first n coords is in Z(fi) for all 1 ≤ i ≤ r,
so g(P ) = 0. Contradicting xn+1g − 1 = 0, so Z(J̃) = ∅, so 1 ∈ J̃ by weak Nullstellensatz, so
∃h1, ..., hn+1 ∈ k[x1, ..., xr+1] with

∑r
i=1 hifi + hr+1(xn+1g − 1) = 1. On the set where xn+1g = 1, we

have
∑r

i=1 h(x1, ..., xn, 1/g(x1, ..., xn))g(x1, ..., xn) = 1. Clear denominators by a sufficiently high power
of g. Get

r∑
i=1

h′i(x1, ..., xn)fi(x1, ..., xn) = g(x1, ..., xn)
N

so g ∈
√
J .
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4 Coordinate Rings and Morphisms

Corollary 4.1. There is a bijective correspondence

{affine alg subsets of An} ←→ {radical ideals in k[x1, ..., xn]}
X → I(X)

Z(J)← J

Proof. Z(I(X)) = X and I(Z(J)) =
√
J .

This specializes to

{affine varieties in An} ↔ {prime ideals of k[x1, ..., xn]}

Definition 4.2. X ⊆ An affine algebraic set. The coordinate ring on X (the ring of regular functions
on X) is A(X) = k[x1, ..., xn]/I(X). [Alternative notations include OX ,O(X), k[X],...]

Remark 2. Have an algebraic description of evaluation of P ∈ X. Write P = (p1, ..., pn), then

evP = k[x1, ..., xn]→ k[x1, ..., xn]/(x1 − p1, ..., xn − pn)
∼=→ k

Call mP = (x1 − p1, ..., xn − pn), then mP = I({P}). For P ∈ X ∈ An, I(X) ⊆ mP , and the image of
mP in A(X) is the ideal of regular functions on X which vanish at P .

Definition 4.3. X ⊆ An, Y ⊆ Am affine alg. sets. A morphism (regular map) fromX to Y is f : X → Y
s.t. ∃p1, ..., pm ∈ A(X) with f(P ) = (p1(P ), ..., pm(P )) for all P ∈ X. Denote the set of morphisms
X → Y by Mor(X,Y ). In particular, if Y = A1, then Mor(X,A1) = A(X).

Definition 4.4. Let f : X → Y be a morphism. The pullback of f is f∗ : A(Y )→ A(X), g 7→ g ◦ f .

1) Morphisms are cts w.r.t. Zariski topology. If Z = Z(g1, ..., gr) ⊆ Y , then

f−1(Z) =
⋂
i

f−1(Z(gi)) =
⋂
i

Z(f∗g) = Z(f∗g1, ..., f
∗gr)

2) Morphisms need not be closed, e.g., πx : A2 → A1 sends Z(xy − 1) to A1 \ {0}.

3) Functorial.

4) Pullback f∗ : A(Y )→ A(X) is a ring hom, which restricts to the identity on k, i.e., f∗ is a k-algebra
hom.

Example 4.5. 1) Let n ≥ m, π : An → Am projection on to the first m coords. Then π is a morphism
and π∗ : k[y1, ..., ym]→ k[x1, ..., xn] is given by yi → yi ◦π = xi, i.e., this map is the natural inclusion.

2) f : A1 → Z(y − x2) ⊆ A2, t 7→ (t, t2). Then f∗ : k[x, y]/(y − x2) → k[t], x 7→ t, y 7→ t2, is an iso.
More gnerally, the affine d-Veronese embedding of A1 is the image of t 7→ (t, t2, ..., td) ⊆ Ad (degree
d Veronese curve).

Theorem 4.6. Let X ⊆ An, Y ⊆ Am be affine alg. sets. Then f 7→ f∗ defines a bijection Mor(X,Y )→
Homk(A(Y ), A(X))

Proof. Let x1, ..., xn, y1, ..., yn be coords on An, Am respectively. A morphism f : X → Y described by
P 7→ (f1(P ), ..., fm(P )), fi ∈ A(X). Then f∗yi = fi by defn, so f can be recovered from f∗, i.e., the
map is inj.

If λ : A(Y )→ A(X) is a k-algebra hom. Define fi = λ(yi) and f : X → Am by f = (f1, ..., fm).
Claim: f(X) ⊆ Y = Z(I(Y )), i.e., g ◦ f vanishes for all P ∈ X and all g ∈ I(Y ) We have
g ◦ f = g(f1, ..., fm) = g(λ(g1), ..., λ(gm)) = λ(g), so this is 0 if g ∈ I(Y ). Note that λ = f∗, since
λ(yi) = f∗(yi).

Definition 4.7. A morphism f : X → Y is an isomorphism if f is bijective and f−1 is a morphism.

Note that being bijective does not imply being an iso, e.g., X = A1, Y = Z(y2 − x3) ⊆ A2. f : X →
Y, t 7→ (t2, t3) is a bijective morphism. If f−1 is a morphism, then ∃fg ∈ k[x, y] s.t. g(t2, t3) = t.
Contradiction.

Corollary 4.8. f : X → Y is an iso iff f∗ is an iso.

This is affine. Will see that Ĉ (Riemann sphere) is a proj. variety. If f is a fn on Ĉ which looks like
a finite-valued poly everywhere, then it’s constant by Liouville.
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5 Proof of Nullstellensatz

Definition 5.1. S is a finitely generated R-algebra if ∃s1, ..., sn ∈ S s.t. S = R[s1, ..., sn]. Say S is
integral over R if ∃ monic poly f ∈ R[x] with f(s) = 0.

Proposition 5.2. Let s ∈ S, TFAE,

1) s is integral over R,

2) R[s] is a f.g. R-mod

3) ∃ f.g. R-mod R′ which is a subring of S s.t. R[s] ⊆ R′.

Proof. 1)⇒2): Take a monic poly f which annihilates s, then R[s] is generated by 1, s, ..., sdeg(f)−1 as
R-mod.

2)⇒3): Take R′ = R[s].
3)⇒1): Write R′ = Rv1 + · · · + Rvn. Consider the multiplication by s. Let A be the matrix of this

R-lienar map. Then Av = sv, so (A− s id)v = 0, so det(A− s id) = 0 and det(A− s id) is monic over R,
so s is integral over R.

Corollary 5.3. If R ⊆ S are rings and S is f.g. as an R-alg and R-mod, then all elements of S are
integral over R.

Lemma 5.4 (Zariski’s lemma). Let K/k be a field extension. If K is a f.g. k-algebra, then K is a f.g.
k-module.

Now prove Weak Nullstellensatz assuming Zariski’s lemma.

Proof of Weak Nullstellensatz. Note that (x1 − ai, ..., xn − an) is maximal in k[x1, ..., xn].
Suppose m ⊴ k[x1, ..., xn] is maximal. so k ↪→ k[x1, ..., xn] → k[x1, ..., xn]/m = K, so K/k is a

field extension. K is f.g. as k-algebra, so f.g. as k-mod (Zariski), so the extension is finite. But k is
alg-closed, so the extension is trivial. ϕ is surj. Define ai = ϕ−1(xi mod m), so xi − ai ∈ m. Then
m = (x1 − a1, ..., xn − an) by maximality of the other.

Proposition 5.5. Suppose k ⊆ k(s) is a field extension and s is transcendental over k. Then

1) k[s] is a UFD, and contains an infinite set of pairwise coprime elements.

2) If t ∈ k(s) is integral over k[s], then t ∈ k[s].

Proof. 1) The map k[x] → k[s] is an iso. If we can only find a finite set of monic irreducible pairwise
coprimes p1, ..., pk, then p1 · · · pk + 1 is pairwise coprime to everything on the list.

2) Write t = p(s)/q(s) and suppose ∃f0, ..., fn−1 ∈ k[s] s.t. (p/q)n + fn−1(p/q)
n−1 + · · ·+ f0 = 0. If

p, q are coprime, then q is const, i.e., t ∈ k[s].

Proof of Zariski’s lemma. Induction on the number of generators of K as a k-alg. Base case: K is
generated by s. s−1 ∈ k[s], so s is alg over k so integral over k, so K is f.g. as a k-mod. Suppose the
lemma holds for < n generators. Let K = k[s1, ..., sn]. Apply inductive hypothesis to k(s1), so K is a f.g.
K(s1)-mod. If s1 is alg, then done. Suppose s1 is transcendental over k. Note that each si, 2 ≤ i ≤ n
is alg over k(s1), so ∃fij ∈ k(s1) s.t. sni

i + · · ·+ fi,n−1s
ni−1
i + · · ·+ fi,0 = 0. There exists f ∈ k[s1] s.t.

(fsi)
ni + ffi,n−1(fsi)

n−1+ · · ·+ fnif0 = 0, so fsi is integral over k[s1]. If h ∈ k(s1) ⊆ K = k[x1, ..., xn],
then ∃N s.t. fNh ∈ k[s1][fs2, ..., fsn], so f

Nh is integral over k[s1]. Since k[s1] is integrally closed,
fNh ∈ k[s1]. This holds for all h, so choose h = 1/t, t is coprime to f by the previous prop, so
contradiction. So s1 is algebraic.

Definition 5.6. Let X ⊆ An be an affine variety. The function field of X, k(X) is the fraction field
of A(X). Its elements are called rational functions on X (k = C: meromorphic). If φ ∈ k(X) can be
represented by f/g, with g(P ) ̸= 0 for P ∈ X, then we say φ is regular at P .

Definition 5.7. If p is a prime ideal in an ID R with field of fractions K. The localization of R at p is
Rp = {a/b ∈ K : b ̸∈ p}.

Definition 5.8. A local ring is a ring with a unique maximal ideal
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Definition 5.9. Let X be an affine variety, and x ∈ X. The local ring of X at x is OX,x = {φ = f/g :
f, g ∈ A(X), g(x) ̸= 0}. This is the localization of A(X) at the prime ideal {f ∈ A(X) : f(x) = 0}. (the
image of mx)

Proposition 5.10. Let X be an affine variety, x ∈ X. OX,x has a unique maximal ideal mx = {φ ∈
OX,x : φ(x) = 0}.

Proof. φ = f/g ∈ OX,x has multiplicative inverse iff f(x) ̸= 0 iff φ ̸∈ mx. Any proper ideal of OX,x is
contained in mx.

Lemma 5.11. If R is a Neotherian ID and p is a prime ideal of R, then Rp is Noetherian.

Proof. Given an ACC in Rp. Take the preimage under the projection map. Get an ACC in R which
stabilizes. Argue by contradiction.

Definition 5.12. X affine variety. For U ⊆ X open, OX(U) =
⋂

x∈U OX,x is the ring of regular
functions on U .

Lemma 5.13. OX(X) = A(X)

Proof. “⊇” clear.
“⊆”: If φ ∈

⋂
xOX,x. Define Iφ = {h ∈ A(X) : hφ ∈ A(X)}. If Iφ is proper, then it is contained in

a maximal ideal. By weak Nullstellensatz, ∃P ∈ X s.t. h(P ) = 0 for all h ∈ Iφ. But φ is regular at P ,
i.e., φ = f/g, g(P ) ̸= 0. Contradiction. So 1 ∈ Iφ.

Remark 3. It can happen that φ requires more than one representation as fractions, e.g. in A4, X =
Z(xw − yz). Let φ = x/y ∈ k(X) regular on X ∩ {y = 0}. Also φ = z/w on X, which is regular for
w ̸= 0, so φ is regular on (X ∩ {y ̸= 0}) ∪ (X ∩ {w ̸= 0}).

Proposition 5.14. Let f : X → Y be a cts (in Zariski topology) map of affine varieties. Then TFAE,

1) f is a morphism.

2) for all x ∈ X and all φ ∈ OY,f(x), f
∗φ ∈ OX,x

Proof. If f is a morphism and φ = g/h where h(f(x)) ̸= 0, then f∗ = (g ◦ f)/(h ◦ f) and h ◦ f ̸= 0 at x,
so f∗φ ∈ OX,x.

Conversely, if φ 7→ φ ◦ f induces a map OY,f(x) → OX,x for all x ∈ X, then we have

f∗ :
⋂

f(x)∈f(X)⊆Y

OY,f(x) →
⋂
x∈X

OX,x = A(X)

Restrict to A(Y ), get f∗ : A(Y )→ A(X). Evaluating f∗ at each coordinate y1, ..., yn gives a morphism.

6 Projective Varieties

Consider the projective n-space Pn = Pn
k . Have Pn = An ∪Pn−1. Call pts in Pn−1 in this decomposition

“pts at infinity”.
We define Ui = {[x0 : · · · : xn] ∈ Pn : xi ̸= 0} for 0 ≤ i ≤ n (standard affine patch of Pn), and Pn \Ui

is a coordinate hyperplane.

Proposition 6.1. With the quotient topology, CPn is compact.

Definition 6.2. The Zariski topology on Pn is the quotient topology induced by the projection An+1 \
{0} → Pn.

Example 6.3. n = 1. (ES1) Zariski closed subsets in k2 are ∅, k2, finite unions of curves and points.
So ∅,P1 and the curves which contain lines through 0 are lines through 0 (cf. ES1), so get finite sets
too.

Definition 6.4. A polynomial F ∈ k[x0, ..., xn] is homogeneous if all its monomials have the same
degree.
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Lemma 6.5. Let F be a homogeneous poly of degree d in k[x0, ..., xn]. Then Z(F ) is a well-defined
subset of Pn.

Proof.

Definition 6.6. An algebraic set in Pn is any set of the form Z(S), where S is a collection of homogeneous
polys (not necessarily of the same degree).

Can define a topology on Pn where closed sets are algebraic sets. (Q1ES2) This coincides with the
Zariski topology on Pn.

Definition 6.7. An ideal I ⊴ k[x0, ..., xn] is homogeneous if it is generated by homogeneous polys (not
necessarily of the same degree).

Note that (x, x3 + y2) ⊴ k[x, y] is an ideal generated by non-homogeneous polys, but can rewrite it
as (x, y2) which is homogeneous.

Lemma 6.8. Let I ⊴ k[x0, ..., xn]. Then TFAE,

1) I is homogeneous

2) If f ∈ I, then the degree d part fd ∈ I, where fd is the sum of all degree d monomials of f .

Proof. 1)⇒2): If I is homogeneous, then I = (f1, ..., fk) s.t. deg fi = di and fi homogeneous. Given
g ∈ I, decompose g as a k[x0, ..., xn]-linear combination of fi and write down the degree d part of g.

2)⇒1): If f1, ..., fs generate I, then
⋃s

i=1

⋃
d≥0{(fi)d} generate I and are all homogeneous.

As in the affine case, we have

Proposition 6.9. For homogeneous ideals Ij ⊴ k[x0, ..., xn] we have

1) I1 ⊆ I2 =⇒ Z(I1) ⊇ Z(I2);

2)
⋂
Z(Ij) = Z(

⋃
Ij)

3) Z(I1) ∪ Z(I2) = Z(I1I2).

Definition 6.10. An algebraic set in Pn is Z(I) for any homogeneous ideal I. A projective variety is
any irreducible algebraic set in Pn.

Example 6.11. Suppose f1, ..., fr are linear homogeneous in k[x0, ..., xn]. Each Z(fi) ⊆ kn+1 is a vector
subspace, so Z(f1, ..., fr) ⊆ kn+1 is too. Then Z(f1, ..., fr) ⊆ Pn is a projective linear space in Pn. E.g.,
Z(ax+ by+ cz) ⊊ P2. This is parametrized by a projective line, for example, if a ̸= 0 then (b : a : 0) and
(−c : − : a) are distinct pts on Z(ax + by + cz). The map (t, u) 7→ (bt − cu : −at : au) identifies P1 as
this projective linear space.

Example 6.12. Any element of GLn+1(k) induces a well-defined map on Pn. The action has kernel
{λI : λ ∈ k∗}. (cf. ES2)

Varieties do not need to be irreducible.

Definition 6.13. If F ∈ k[x0, ..., xn] is a non-const homogeneous poly, then Z(F ) ⊆ Pn is called a
hypersurface in Pn.

Example 6.14. Segre surface Σ1,1 = Z(x0x3 − x1x2) ⊆ P3. Consider the function of sets P1 × P1 →
P3, ((t0 : t1), (u0 : u1)) 7→ (t0u0 : t0u1 : t1u0 : t1u1). This defines a bijection P1 × P1 → Σ1,1. This
identification is the defn of P1 × P1 as a projective variety.

Example 6.15. (Rational normal curve of degree n in Pn) Consider P1 → Pn, (t : u) 7→ (tn : tn−1u :
· · · : un) (bijective to its image). When n = 3 this is the (projective) twisted cubic. It’s the zero locus
of 3 quadrics in k[x0, ..., x3] and cannot be written as Z(f1, f2) (ES2).

(From projective to affine) Given a proj. variety V = Z(I) ⊆ Pn. Define I0 = {F (1, x1, ..., xn) : F ∈
I} (dehomogenization) in k[x1, ..., xn] with V0 = Z(I). Then V0 = C ∩ U0, where U0 is the standard
patch with x0 ̸= 0.

(From affine to proj) If V is an affine variety, then V ⊆ Pn via an inclusion. This is not necessarily
closed in Pn. Can take the closure in Zariski topology.
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Definition 6.16. If f ∈ k[x1, .., xn], then the homogenization of f is F = xdeg f
0 f(x1

x0
, . . . , xn

x0
).

If V = Z(I) ⊆ An, then define I∗ to be the ideal generated by all homogenization of elements
of I. Write V ∗ = Z(I∗) ⊆ Pn. Under the standard inclusion of the patch U0, V

∗ ∩ U0 = V . Call
V ∗ the projective closure of V . It is the minimal projective variety containing V , i.e., if V ⊆ Y =
Z((F1, ..., Fs)) ⊆ Pn, then each dehomogenization fi of Fi vanishes on V , so each fi is in I(V ), so
Fi ∈ I∗, so I(Y ) ⊆ I(V ∗),so V ∗ = Z(I(V ∗)) ⊆ Z(I(Y )) = Y .

Example 6.17. The affine Fermat curve Z(xn + yn − 1) has homogenization xn + yn = zn which gives
a curve in P2 (the projective closure). The points at infinitey (z = 0) are precisely (1 : ζ : 0), ζn = −1.

Example 6.18. Consider V = Z(x0x2 − x21) ⊆ P2. Dehomogenize w.r.t. each variable, get affine pieces
Z(x2 − x21), (x0x2 − 1), Z(x0 − x21).

Example 6.19. Let F be a homogeneous poly of deg 2 in k[x0, ...., xn]. Q = Z(F ) is a quadric
hypersurface. Can choose coordinates so that this is identified with Z(x20 + · · ·+ x2r), where r + 1 is the
rank of the quadratic form.

6.1 Projective Nullstellensatz

Definition 6.20. Let X ⊆ Pn Define the ideal of X to be I(X), generated by homogeneous polys which
vanish on X. The affine cone over X is C(X) = {(x0, ..., xn) ∈ An+1 : (x0 : · · · : xn) ∈ X}∪ {0} ⊆ An+1.

Proposition 6.21 (Projective Nullstellensatz).

(1) If X1 ⊆ X2 ⊆ Pn are algebraic, then I(X2) ⊆ I(X1)

(2) If X ⊆ Pn is algebraic, then Z(I(X)) = X

(3) For any homogeneous ideal J ⊴ k[x0, ..., xn] and Z(J) ̸= ∅, then I(Z(J)) =
√
J .

(4) If J is a homogeneous ideal with Z(J) = ∅, then either J = (1) or J(x0, ..., xn).

Proof. (1) and (2) are the same as affine cases.
(3): Given such J , have C(Z(J)) ̸= ∅. By affine Nullstellensatz, I(Z(J)) =

√
J .

(4): Z(J) viewed in An+1 is either empty or {0}. By affine Nullstellensatz,
√
J contains x0, ..., xn.

Definition 6.22. If V ⊆ Pn is a projective variety and W ⊆ V is also a projective variety, then we
say that W is a (closed) subvariety of V , and V \W is an open subvariety of V . Open subvarieties of
projective varieties (including ∅) are quasi-projective varieties.

Proposition 6.23.

(i) Every projective variety is a finite union of irreducible proj. varieties,

(ii) a projective variety X is irreducible iff I(X) is prime.

Proof. (1) identical to the affine argument. (2) If X is reducible, then π : C(X) \ {0} → X shows that
C(X) is reducible, so I(X) is not prime (by the affine version). If I(X) is not prime, so C(X) = V1 ∪V2,
closed proper subsets. Define Zi = Z(f(λx0, ..., λxn) : f ∈ I(Vi), λ ∈ k×) (lines through 0 in Vi). Note
that Zi ⊆ Vi, so proper. Since closet subsets of A1 are A1,∅, finite sets. Each line is in either Z1 or Z2,
so C(X) = Z1 ∪ Z2. Apply π, X is reducible.

A subset S ⊆ X of an algebraic set X is Zariski dense iff any poly f vanishing on S vanishes on X.

Proposition 6.24. Let X ⊆ Pn be irred proj. variety, Y ⊊ X closed subvariety. Then X \ Y is Zariski
dense in X.

Proof. Let f ∈ I(X \ Y ). By projective Nullstellensatz, I(X) ⊊ I(Y ), so find g ∈ I(Y ) \ I(X), so
fg ∈ I(X) and g ̸∈ I(X), so f ∈ I(X) (X is irred.).
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6.2 Functions on Projective Space

Definition 6.25. If X ⊆ Pn be an irred projective variety. The function field (field of rational functions)
of X is k(X) = {f/g : f, g, h ∈ k[x0, ..., xn] homogeneous of equal degree, g /∈ I(X)}/ ∼, where f1/g1 ∼
f2/g2 iff f1g2 − f2g1 ∈ I(X).

Can check that ∼ is an equiv relation.

Proposition 6.26. Let X ⊆ Pn be a projective variety and X ⊊ {x0 = 0} (so that X0 = X ∩ U0) is
non-empty and open. Then k(X) = k(X0).

Proof. The map f/g 7→ f(1, y, ..., yn)/g(1, y, ..., yn) provides an isomorphism.

Definition 6.27. Let X ⊆ Pn be an irred projective variety and φ ∈ k(X), and P ∈ X. Then φ is
regular at P if ∃ representative f/g of φ with g(P ) ̸= 0. Then the local ring at P is OX,P = {φ ∈ k(X) :
φ regular at P}.

Proposition 6.28. Suppose X ⊆ Pn not contained in {x0 = 0}. Let P ∈ X ∩ U0, where U0 is the first
affine patch. Then OX,P = OX0,P .

Proof. Normalize the first coord, cf. the last proof.

Example 6.29. If k = C and consider P1
C (Riemann sphere). If φ ∈ C(P1

C) is regular at all points, then
φ gives a holomorphic map C∞ → C which is necessarily constant by Liouville.

Proposition 6.30. There are no non-constant rational functions on P1 which are regular at all points.

Proof. If φ ∈ k(P1) with representative f(x0, x1)/g(x0, x1), with no common factors of degree d, then
f(1, x1), g(1, x1) have no common root. [If x1 − α is a factor of g(1, x1), then x1 − αx0 is a factor of
g. If α is a root of g, and φ = h/k, then kf − hg = 0, so k(1, x1)f(1, x1) = h(1, x1)g(1, x1). Since
f(1, α) ̸= 0, conclude that k(1, α) = 0, but now φ fails to be regular at (1, α).] So g(1, x1) has no roots,
so g(x0, x1) = cxd0 for some constant c. Symmetric argument applies to x0, so g(x0, x1) = c′xd1, so d = 0,
so φ is constant.

Corollary 6.31. Pn has no non-constant rational functions which are regular everywhere.

Proof. If φ ∈ k(Pn) is non-constant, then find P,Q ∈ Pn s.t. φ(P ) ̸= φ(Q). Restrict to the projective
line L connecting P,Q. Then apply the preceding proposition to get a contradiction.

6.3 Maps Between Projective Varieties

Suppose F0, ..., Fm ∈ k[x0, ..., xn] are homogeneous of the same degree. Then F = (F (x0, ..., xn), ..., F (x0, ..., xn)) :
kn+1 → km+1. This induces a well-defined map Pn \ (

⋂
i Z(Fi)) → Pm. For any homogeneous

G ∈ k[x0, ..., xn], (F0G : · · · : FmG) defines the same map on a smaller set.

Definition 6.32. Let X ⊆ Pn be a projective variety, F0, .., Fm ∈ k[x0, ..., xn] homogeneous of the same
degree, not all in I(X). Then we have a well-defined map F : X \

⋂
i Z(Fi) → Pm. We say that F and

G (as above) determine the same rational map if they agree where both defined (a Zariski dense open
subset). This is an equiv rel, and an equiv class is called a rational map on X, denoted F : X −→• Pm.

[Note that F is equiv to G can be checked by the condition FiGj −GiFj ∈ I(X) for all i, j.]

Definition 6.33. A rational map F is regular at P ∈ X if there exists representative (F0 : · · · : Fm) with
Fi(P ) ̸= 0. The domain of F is the set of regular points of Fi and X \domain is the set of indeterminate
points of F .

Definition 6.34. A rational map is said to be a morphism if it is regular at all points of X. In this case
write F : X → Pn (solid arrow). If F : X → Y ⊆ Pm (morphism) for some algebraic subset Y , then F
is a morphism. A morphism is an isomoprhism if there exists an inverse. A rational map is birational if
it has rational inverse.

Example 6.35. If F0, ..., Fm are degree 1 homogeneous polys, get a rational map from Pn to Pm. This
is a morphism iff the matrix has full rank n+ 1 ≤ m+ 1.
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Example 6.36 (Projection from a point). Suppose P = (0 : · · · : 0 : 1). Define projection from P (to
the hyperplane xn = 0) by

π(x0 : · · · : xn) = (x0 : · · · : xn−1)

Note that π is not regular at P but is regular at all other points. Suppose X = Z(F ) for some deg d
homogeneous poly. If P /∈ X, the πX : X → Pn−1 is a morphism. Fix a = (a0 : · · · : an−1) ∈ Pn−1.
π−1(a0 : · · · : an−1) intersects X at (x0 : · · · : xn) = (a0λ : · · · : an−1λ : ∗) iff f(a0, ...., an−1, xn) = 0.
Note that deg f(a0, ..., an−1, xn) ≤ deg f in the variable xn, so we have ≤ deg f such points.

Consider n = 2, X = Z(x0x2 − x21), then π(x0 : x1 : x2) = (x0 : x1) ∼ (F0 : F1) iff x1F0 + x0F1 ∈
(x0x2 − x21), so F0 = −x1, F1 = x2 is an example which is defined at P . So π|X is an isomorphism
Z(x0x2 − x21) ≃ P1. More generally,

Definition 6.37. Let n, d ≥ 1 and N =
(
n+d
n

)
− 1. Then νd : Pn → PN , (x0 : · · · : xn) 7→ (xd0 :

· · ·xd−1
0 x1 : xd−2

0 x2 : · · · : xdn) is the degree d Verenoese embedding of Pn.

νd(Pn) is a projective variety, and νd is an isomorphism.

Remark 4. A homogeneous degree d poly F has zero locus Z(F ) ⊆ Pn ↔ the hyperplane from the
coefficients of F intersected with νd(Rn), i.e., F = a0x

d
0 + a1x

d−1
0 x1 + · · · + aNx

d
n ↔ hyperplane a0z +

· · ·+ aNzN

Example 6.38. Let m,n ≥ 1 and define N = (n + 1)(m + 1) − 1. The Segre embedding is σm,n :
Pm × Pn → PN , ((x0 : · · · : xm), (y0 : · · · : yn)) 7→ (x0y0 : x0y1 : · · · : xmyn) = (xiyj)0≤i≤m,0≤j≤n.

Proposition 6.39. σm,n is a bijection and the projection maps forming its inverse are morphisms. We
have Σm,n := σm,n(Pm × Pn) = Z(I), where I is the ideal generated by (zijzpq − ziqzpj), 0 ≤ i, p ≤ m,
0 ≤ j, q ≤ n. This ideal is prime, so Σm,n is irreducible.

Proof. σm,n(Pm × Pn) ⊆ Z(I) clear.
If (a00 : · · · : amn) ∈ Z(I), then ∃i, j s.t. aij ̸= 0 and wlog assme aij = 1. Define x = (x0, ..., xm)

by xp = apj and y = (y0 : · · · yn) by yq = aiq. The image z00 : z01 : · · · zmn of (x, y) satisfies
zpq = xpyq = apjaiq = apq, so the reverse inclusion also holds.

To see that I is prime, note that it is the kernel of k[z0, ..., zmn] → k[x0, ..., xm, y0, ..., yn], zij 7→
xiyj .

Definition 6.40. Let X ⊆ Pm, Y ⊆ Pn be proj. varieties. The Zariski topology on X×Y is the topology
given by identification of X × Y and σmn(X × Y ).

Example 6.41. m = n = 1. P1 × P1 is identified with Z(z0z3 − z1z2). Fix P ∈ P1, then P × P1 and
P1 × P are closed curves in Z(z0z3 − z1z2) isomorphic to P1.

Theorem 6.42. Projective varieties are complete, i.e., if X is proj, then for any variety Y , the second
projection X × Y → Y is closed. (Algebro-geometric version of compactness)

Proof omitted
Recall that this is false for affine varieties.

Corollary 6.43. Let f : X → Y be a morphism of projective varieties. Then f is a closed map.

Proof. Consider X → X × Y , x 7→ (x, f(x)). Running through the defn of Segre embedding, id×f is a
closed map. X is complete, so f = π2 ◦ (id×f) is closed.

Corollary 6.44. Let X be an irreducible projective variety. Then all regular functions on X are constant.

Proof. If f is regular on X, f : X → A1 → P1 is a closed map, so f(X) is a finite union of pts. So
|f(X)| = 1 by irreducibility, i.e., f is constant.

6.4 Algebro-geometric Correspondence

Definition 6.45. A rational map f : X −→• Y of irreducible projective varieties is dominant if f(X) is
dense in Y .

A rational map is birational if it has rational inverse. In this case there exists U open dense in X
and V open dense in Y s.t. U is isomorphic to V .
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Example 6.46 (Monomial maps). Take A ∈ SLn(Z) and define a rational map hA : An → An by
(t1, ..., tn) 7→ (ta11

1 · · · ta1n
n , ..., tan1

1 · · · tann
n ) By defn hA is a morphism on An \ Z(t1, ..., tn). Homoge-

nize/extend to a map Pn → Pn. This is birational with inverse hA−1 .
If A = −I, get hA(t1, t2) = (1/t1, 1/t2). Homogenize. hA([t0 : t1 : t2]) = [t1t2 : t0t2 : t0t1]. [Cremona

involution]

Remark 5. If f : X → Y and g : Y → Z are rational maps, then g ◦ f is a rational map if f is dominant.
In particular, if φ : X → Y (rational) is dominant and g is a rational function on Y , then g ◦ φ is a
rational function on X, i.e., a dominant X → Y induces φ∗k(Y )→ k(X) which is injective.

Theorem 6.47. Let X,Y be varieties. The map φ 7→ φ∗ is a bijective correspondence

{dominant rational maps X → Y } ↔ {k-extensions k(Y ) ↪→ k(X)}

Proof Sketch (Non-examinable). Wlog, assme X,Y affine. Suppose i : k(Y ) → k(X). Consider gen-
erators yj of A(Y ). write i(yj) = aj/bj for aj , bj ∈ A(X). These each define regular functions on
X \

⋃
Z(bj) = X ′. We obtain a map A(Y )→ A(X ′), so there is a morphism X ′ → Y , which is a rational

map from X to Y .

7 Singularities and Tangent Spaces

If Z(f) ⊆ An, then there is a linear subspace V at P = (p1, ..., pn) ∈ X given by

V = {(x1, ..., xn) ∈ An : ∇f · (x− P ) = 0

This is the “tangent plane” at P

Definition 7.1. Let X ⊆ An be an affine variety. P ∈ X a point. The tangent space to X at P is

TX,P = {(v1, ..., vn) ∈ kn : ∀f ∈ I(X), ∇f(p) · v = 0}

Example 7.2. Consider X = Z(x + y + z2 + xyz, x − 2y + z + x2y2z2) ⊆ A3 and P = (0, 0, 0). Then
TX,0 = {(v1, v2, v3) : v1 + v2 = 0, v1 − 2v2 + v3 = 0} (line)

Example 7.3. Y = Z(x+ y + z3 + xyz, x+ y + x2 + y3 + 4z5), TX,0 = {v1 + v2 = 0} (plane)

If P = 0, then TX,P is generated by the linear part of elements of I(X).
Suppose X = An. If f(P ) = 0, i.e., f ∈ mP (either in k[x1, ...., xn] or OX,P ), define df =

linear part of f , i.e., a1x1 + · · · + anxn. The map f 7→ df can be throught of as a map mP → T ∗
An,0

(dual) The kernel is m2
P . There is an identification TAn,0

∼= mP /m
2
P (cotangent space to X at P ). [Small

algebraic lemma: mP .m
2
P is the same when considered in A(X) and OX,P ]

Proposition 7.4. Let X ⊆ An be an affine variety, P ∈ X. Then there is a natural iso of vect spaces
(TX,P )

∗ ∼= mP /m
2
P .

Proof. X ⊆ An, so TX,P ⊆ kn. So there is a surj map (kn)∗ ∼= kn → T ∗
X,P . Wlog, translate to P = 0.

Composing the restriction map with f 7→ df , we get

D :M → (kn)∗ → T ∗
X,P

where M = (x1, ..., xn). D is surj. Suppose f ∈ kerD, i.e., f ∈MA(X) and Df = 0. Then df is a linear
combination of linear parts of elements of I(X), so f ∈M2, so this descends to the claimed iso.

Definition 7.5. Let X ⊆ Pn be a projective variety. P ∈ X. The tangent space to X at P is TXi,P for
any affine patch Xi of X. We write TX,P .

The previous proposition, TX,P is well-defined.
If X ⊆ Pn and Y ⊆ Pm are proj. varieties and φ : X −→• Y a dominant rational map, P ∈ domain

of φ. Wlog assume affine (patch containing P and patch containing φ(P ))

Definition 7.6. Write φ = (f1, ..., fm) Define a linear map dφP = TX,P → TY,φ(P ) by

(v1, ..., vn) 7→

(
n∑

i=1

vi
∂f1
∂xi

(P ), ...,

n∑
i=1

vi
∂fm
∂xi

(P )

)
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Proposition 7.7. With the notation above,

(i) dφP (TX,P ) ⊆ TY,φ(P )

(ii) dφP is linear and independent of the choice of representation of φ.

(iii) If ψ : Y −→• Z dominant rational map, then d(ψ ◦ φ)P = dψφ(P ) ◦ dφP .

(iv) If φ is birational, and φ−1 is regular at φ(P ), dφP is an iso.

Proof. (i) By defn, dφP (v) ∈ TY,φ(P ) iff
∑

j

∑
i vi

∂fj
∂xi

(P ) ∂g
∂yj

(P ) = 0 for all g ∈ I(Y ). Consider the

pullback on function fields. Define h = g(f1, ..., fm) ∈ I(X). Since (v1, ..., vn) ∈ TX,P , we have∑
i

∂h
∂xi

(P ) = 0. The result then follows from chain rule.
(ii) linear by defn. Suppose φ = (f1, ..., fm) = (f ′1, ..., f

′
m), then fj − f ′j = pj/qj where pj ∈ I(X) and

qj(P ) ̸= 0,
∂(fj − f ′j)

∂xi
=

1

q

∂pj
∂xi

For v ∈ TX,P ,
∑

i vi
∂(fj−f ′

j)

∂xi
= 0 for each j.

(iii) Chain rule; (iv) follows from (iii).

Definition 7.8. Let X be affine or proj. variety.

(i) If X is irreducible, then define dimX = min{P∈X} dimTX,P .

(ii) If X is irreducible, then say P ∈ X is non-singular (or smooth) if dimTX,P = dimX.

(iii) If X is reducible, define dimX to be the maximal dimension of its irreducible components.

(iv) If X is reducible and P ∈ X lies on a single irreducible component Xi, then P is nonsingular iff it
is nonsingular in Xi. If P ∈ Xi ∩Xj for distinct irreducible components, then P is singular.

(v) X is smooth if X has no singular points.

(∃− : (Owen’s Signature)

Rational maps, function fields, local rings, tangent spaces for proj. varieties require irreducibility.
[X = Z(xy) at 0 shows that we do require irreducibility to have a well-defined tangent space.]
If X = Z(f) ⊆ A2 and f has not linear terms and 0 ∈ Z(f), then Z(f) is singular at 0, e.g. , the

nodal cubic curve Z(y2 − x2(x+ 1)) and the cuspidal cubic curve Z(y2 − x3).
Remark 6. These curves are not isomorphic, but the tangent spaces don’t distinguish them. We need to
consider m/m2, m2/m3, . . ..

Theorem 7.9. Let X be an algebraic variety. Then the set of smooth points of x is open dense in X.

Proof. Since the intersection set is proper closed in X, assume wlog X is irreducible. Also assume X is
affine (restrict to a patch if necessary). Say I(X) = (f1, ..., fr). If P ∈ X, then TX,P is the zero locus
of all linearizations about P , dimTX,P = n− rank(∂ifj). {P ∈ X : rank(∂ifj) ≤ n− r} is computed by
(n− r)× (n− r) minors of the matrix (∂ifj) which cannot all be in I(X).

Corollary 7.10. If X,Y are birational varieties, then dimX = dimY .

Proof. Restrict the birational equivalence φ : X −→• Y to the smooth locus.

Definition 7.11. Let L/K be a field extension. We say that x1, ..., xn ∈ L are algebraically independent
over K if there is no non-trivial polynomial p ∈ k[t1, ..., tn] s.t. p(x1, ..., xn) = 0.

Example 7.12. k(An) has n alg indep elements.
k(Z(y2 − x(x + 1)(x − 1))) ∼= f.f. of k[x, y]/(y2 − x(x2 − 1)). Have x, y alg indep, so {x} is alg ind set
and {y} is too, but {x, y} is not.

In general if L/K is f.g., generated by x1, ..., xm, there exists a maximal algebraically independent
subset of {x1, ..., xm}. Wlog, assume {x1, ..., xk} is such a set. SoK ⊆ K(x1, ..., xk) ⊆ L. K(x1, ..., xk)/K
is purely transcendental; L/K(x1, ..., xk) is algebraic. By primitive element theorem, can write L =
K(x1, ..., xk)(y) for some y ∈ L.
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Definition 7.13. Any set {x1, ..., xr} ⊆ L which generate a pure transcendental extension K(x1, ..., xr)
s.t. L/K0 is finite is called a transcendence basis for L/K.

Definition 7.14. The transcendence degree of a f.g. field extension L/K is the size of any transcendence
basis.

Proposition 7.15. Let K = k(x1, ..., xn) with {x1, ...., xn} alg indep over k, and L/K a field extension.
If xn+1 ∈ L is algebraic over K, then I = {g ∈ k[t1, ..., tn, t] : g(x1, ..., xn+1) = 0} is a principal ideal
generated by an irreducible f ∈ k[t1, ..., tn+1]. If f contains ti, then {x1, ..., xi−1, xi+1, ..., xn+1} is an alg
indep set over k.

Proof. Note that k[t1, ..., tn] ⊂ K is suitable for Gauss lemma, and K[t] is a PID. I has a generator in
K[t]. By Gauss, irred generator. If removing xi gives an alg dep set, then can find g ∈ I which doesn’t
include ti...

Corollary 7.16. Transcendence degree is well-defined

Proof. NOtes on moodle

Lemma 7.17 (Reduction to hypersurface). X irred alg variety. Then X is birational to a hypersurface.

Proof. Find K0 = k(x1, ..., xn) purely transcendental with k(X)/K0 finite. Write k(X) = K0(y). The
previous proposition says we have irred f ∈ k[x1, ..., xn][y] s.t. k[x1, ..., xn, y] ∼= k[x1, ..., xn, y]/(f), which
is the coord ring of a hypersurface. By correspondence, X is birational to hypersurface.

Corollary 7.18. For any irred alg variety X, dimX is the transcendence degree of the function field
k(X). Notation: trdegk k(X).

Proof. By reduction lemma, suffices to consider hypersurfaces. If P ∈ X, then TX,P has dimension n or
n− 1. On a Zariski open subset this dim is n− 1. We have k(X) = f.f. of k[x1, ..., xn]/(f) for some irred
non const f which has transcendence degree n− 1, since f is nonconst.

8 Structure of Algebraic Curves

Definition 8.1. A curve is a smooth projective, irreducible variety of dimension 1.

(unless qualified by singular/affine/reducible)

Example 8.2. Hypersurfaces in P2, Z(f) for f homogeneous non=const deg d polys in three variables.
f is specified by

(
d+2
2

)
coeffs. Using this, can make the following identification:

{deg d hypersurfaces in P2} ↔ P(
d+2
2 )−1

Reducibility of Z(f) is a Zariski closed condition in P(
d+2
2 )−1. Note that (xd + yd + zd) is irreducible

for every degree (Gauss). Get an open dense set in P(
d+2
2 )−1 corresponds to irred hypersurfaces. In

P(
d+2
2 )−1 × P2 there is a closed subvariety defined by f(P ) = 0. Vanishing of ∂xf, ∂yf, ∂zf are closed

conditions since all curves contain smooth points, there is a Zariski closed proper subset in P(
d+2
2 )−1×P2

which contains all pairs (f, P ) which have f(P ) = 0 but f is reducible or P is singular for Z(f). A
generic hypersurface in P2 is a curve, e.g., Z(xd + yd + zd) is a curve in P2.

Remark 7. (Euler’s homogeneous identity) If f is homogeneous of deg d in n variables, then F (x1, ...., xn) degF =∑n
i=1 xi∂xi

F (x1, ..., xn). This is an identity of polys. (Suffices to check monomials)

Proposition 8.3. Let C be a curve, D ⊆ C a proper closed subvariety. Then D is a finite union of
points.

Proof. Wlog, C is affine, D is irreducible. Have I(C) ⊊ I(D). So the inclusion induces a surjective hom
φ∗ : A(C)→ A(D). If D is not a point, then Nullstellensatz implies A(D) ⊋ k. k is alg closed, so A(D)
contains a transcendental element (over k). Clear denominators and call the resulting elt t. There exists
x, y ∈ A(C) s.t. φ∗(x) = 1 and φ∗(y) = t, so x, y are algebraically indep in A(C) and hence in k(C).
Contradiction as dimC = 1.
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Theorem 8.4. If P ∈ C is a smooth point of a irred proj. dim 1 (not necessarily smooth) variety, then
the ideal mP ⊴ OP is a principal ideal.

Lemma 8.5 (Nakayama’s lemma). Let R be a ring, M a f.g. R-module. Let J ⊴ R be an ideal.

(i) If JM =M , then ∃r ∈ J s.t. (1 + r)M = 0.

(ii) If N ⊆M is a submodule s.t. JM +N =M , then ∃r ∈ J s.t. (1 + r)M ⊆ N .

Proof. (i): Write M = y1R1 + · · · + ynR, yi ∈ M = JM . Write yi =
∑

j xijyj , xij ∈ J . Consider the
matrix X = (xij) so that (I −X)yi = 0 for all i. Multiply by adjugate, get det(I −X)yi = 0 for all i.
Note that det(I −X) = 1 + r for some r ∈ J .

(ii): Apply (i) to M/N and use the correspondence of submodules.

Proof of thm. Can change coord, so wlog assume P = 0 and TC,P = {x2 = · · · = xn = 0}. Can
also assume C is affine. So there exists polys f2, ..., fn ∈ I(C) with fj = xj + hj , where temr of hj
all have deg ≥ 2, so in OP we have xj = hj ∈ m2

P . So mP = x1OP + m2
P . Apply Nakayama with

N = x1OP ⊆M = mP = J ⊆ R = OP . There exists r ∈ mP s.t. (1 +R)M ⊆ N . Since r ∈ mP , 1 + r is
a unit, so M ⊆ N , i.e., mP = x1OP .

Corollary 8.6. Let C is an affine plane curve (possibly singular) Z(f) ⊆ A2. Let P ∈ C be a smooth
point. Then the function C → k, Q 7→ x(Q)− x(P ) is a local coordinate at P if ∂yf(P ) ̸= 0.

Proof. Wlog by translation, assume P = (0, 0) with tangent space {aX+bY = 0}. THe proof of previous
thm shows that Y ∈ XOp +m2

P precisely when ∂yf(P ) ̸= 0 so in this case X is a local coord at P .

Theorem 8.7 (Generalized Eisenstein). Let R be an integral domain, p a prime ideal of R, f(x) =
anx

n + · · ·+ a1x+ a0, an /∈ p, ai ∈ p for 0 ≤ i < n and a0 /∈ p2. Then if f(x) = g(x)h(x) in R[x], g or
h is constant.

Proof. cf. GRM, reduce to (R/p)[x].

Example 8.8. xd + yd + zd ∈ k[x, y, z]. Have yd + zd =
∏

ζd=−1(y− ζz). Any y− ζz generates a prime
ideal. Apply Eisenstein, conclude irred.

Local coord at P =⇒ OP is a discrete valuation ring.

Corollary 8.9. Let P be a smooth point of a possibly singular curve C. Then there exists a surjective
hom νP : k(C)× → Z called the valuation at P with the following properties [defn of discrete valuation
ring]

(i) OP = {0} ∪ {f ∈ k(C)∗ : νP (f) ≥ 0}

(ii) mP = {0} ∪ {f ∈ OP : νP (f) > 0

(iii) νP (x+ y) ≥ min{νP (x), νP (y)} with equality if νP (x) ̸= νP (y)

If f ∈ k(C)×, then for any local parameter πP at P , we can find a unit u ∈ OP s.t. f = uπ
νP (f)
P .

[Often define νP (0) =∞]

Proof. This is a local statement, so assume wlog C is affine. Write mP = (πP ) by the previous theorem.
Consider the ideal I =

⋂
n∈N mn

P . Clearly have mP I = I. I is f.g. as OP is Noetherian. Apply Nakayama,
find r ∈ mP s.t. (1 + r)I = 0, so I = 0 since 1 + r is a unit. For any f ∈ OP \ {0}, there exists n
s.t. f ∈ mn

P \ m
n−1
P . Define νP (f) = n. Given f = g/h ∈ k(C)×, choose g, h ∈ OP , and define

νP (f) = νP (g)− νP (h). Can check well-definedness.

Use OP ⊇ mP ⊇ m2
P ⊇ · · · to write g = uπ

νP (g)
P and h = vπνP

P , so f = uv−1π
νP (f)
P . If x = uπm

P ,
y = vπn

P , u, v units in OP and n,m ∈ Z, then wlog m ≤ n and x + y = πm
P (u + vπn−m

P ). Note that
u+ vπn−m

P is regular at P , so inequality holds. If n > m, then u+ vπn−m
P is a unit, so νP (x+ y) = m =

min{νP (x), νP (y)}.

Remark 8. If P is a smooth point on a possibly singular curve and f ∈ k(C)×, then f or 1/f is regular
at P .

Theorem 8.10. Let X be a curve, and φ : X −→• Pm a rational map. Then φ is a morphism on X. In
particular, birational curves are isomorphic.
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Proof. Wlog choose coords so φ(C) ̸⊆ {x0 = 0}. Write φ = (G0 : · · · : Gm) = (1 : G1

G0
: · · · : Gm

G0
).

If Gi/G0 ∈ OP , then φ is regular at P. Suppose not, then define r = min{νP (Gi/G0 : i = 1, ...,m}.
Multiply through by π−t

P for some local parameter πP at P , get φ = (π−t
P : π−t

P
G1

G0
: · · · : π−t

P
Gm

G0
) which

has at least one coord of valuation non-zero, all non-negative, so φ is regular at P .
If φ : X −→• Y is birational with inverse ψ : Y −→• X, then ψ ◦ ϕ : X → X is birational which is

identity on open dense U ⊆ X. φ,ψ extend to morphisms, so it suffices to show that if f : X → X
is a morphism with f |U = idU (U open), then f = idX . The map f × id : X → X × X maps U to
the diagonal which is closed as it’s cut out by xiyj − xjyi, where xi, yi are the respective coords on the

factors of X ×X. U is dense in X, so (f × id)(X) ⊆ (f × id)(U), so (f × id)(X) ⊆ ∆.

8.1 Maps Between Curves

Example 8.11. Let Cd = Z(fd) ⊆ P2 be a curve defined by a homogeneous poly fd of deg d. If
P ∈ P2, then the projection from P gives a morphism Cd → P1. Note that smootheness is necessary,
e.g. consider the nodal cubic X = Z(y2z − x2(x + z)). Has self-intersection at (0 : 0 : 1). THen the
projection (x : y : z)→ (x : y) = (1 : y/x) canno be ctsly extended to (0 : 0 : 1).

Proposition 8.12. Let φ : X → Y is a non-const morphism of (possibly singular) curves. Then

(i) ∀Q ∈ Y, φ−1(Q) is finite

(ii) φ∗ : k(Y ) ↪→ k(X) is an inclusion, which makes k(X) a finite extension of φ∗(k(Y )) ∼= k(Y ).

Proof. (i): φ−1(Q) is closed and φ is nonconst, so finite.
(ii): φ(X) is dense in Y , so φ is dominant, so φ∗ is inj. If ∈ k(Y ) \ k, then x = φ∗(t) ∈ K(X) \ k.

Since k is alg closed, x must be transcendental, so k(X)/k(Y ) is a finite extension by transcendence
degree.

) : Owen is ill today

Definition 8.13. The degree of a map φ : V →W between curves is degφ = [k(V ) : φ∗(k(W ))].

Definition 8.14. Suppose P ∈ V and Q = φ(P ) ∈W are smooth points. The ramification degree of φ
at P is eP = νP (φ

∗πQ), where πQ ∈ OW,Q is a local parameter and νP : k(V )× → Z is the valuation at
P . (so νP (t

n
p ) = n)

Note that eP = min{νP (x) : x ∈ φ∗(mQ)OV,P }, so eP doesn’t depend on the choice of πQ.
If φ is an isomorphism, then φ∗(mQ)OV,P = mP , so eP = 1, so eP = 1

Definition 8.15. If eP = 1, then we say that φ is unramified at P . Otherwise, say φ is ramified at P .

Picture: degφ = #φ−1(Q) for generic point Q ∈W .

Example 8.16. E = Z(y2 − (x3 − x)), φ : E → A1, (x, y) 7→ x. φ∗(x) = x. Suppose P = (x0, y0) ∈ E
with φ(P ) = Q = x0 ∈ A1. Then εP = νP (φ

∗(x − x0)) = νp(x − x0). x − x0 is a local parameter of
OE,P iff ∂yf ̸= 0 where f = y2 − x3 + x. So νP (x − x0) = 1 iff y0 ̸= 0. At (±1, 0), (0, 0), y is a local
parameter. In OE,P , write y

2 = x3 − x = (x − x0)U(x) where U(x) ∈ k[x] doesn’t vanish at x0. Have
νP (y

2) = 2νP (y) = νP (x
3 − x) = νP (x− x0) + νP (U), so νP (x− x0) = 2 for (±1, 0), (0, 0).

Theorem 8.17. Let φ : V →W be a non-constant map between irreducible projective (possibly singular)
curves.

(i) φ is surjective and for all but finitely many P ∈ V , eP = 1.

(ii) If V and W are smooth, then for all Q ∈W ,
∑

P∈φ−1(Q) eP = degφ.

Proof of (i). Since V is projective, completeness theorem shows that φ(V ) ⊆ W is closed. φ(V ) is also
irreducible and not a point, so φ(V ) =W .

Note eP = 1 iff φ∗(mQ)OV,P = mP . WLOG assume affine by intersecting with patches, so V ⊆
An,W ⊆ Am. Have φ = πW ◦ (id×φ). id×φ is an iso onto its image, so may assume V ⊆ An+m and
φ is the restriction of projection map An+m → Am. Suppose P ∈ V and Q = φ(P ) = (q1, ..., qm),
then mQ = (y1 − q1, ...., ym − qm). So eP = 1 iff (y1 − q1, ..., ym − qm)OV,P = mP . Apply primitive
element theorem to k(V )/k(W ). Can write k(V ) ∼= k(W )[α]. Away from the finite set of poles of
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α, mP = (y1 − q1, ..., ym − qm, α − α(P )). So eP = 1 iff α − α(P ) ∈ mQOV,P . α has min poly
p(y⃗, x) = xd+ad−1(y⃗)x

d−1+· · ·+a0(y⃗), where ai(y⃗) ∈ k(W ). If degree 1, then we are done, so wlog assume

d ≥ 2. By clearing denominators, assume aj(y⃗) ∈ k[y1, ..., ym] Factorize p(y⃗, x) = ad(y⃗)
∏d

i=1(x− βi) in
k(W ). Then disc(p) = ad(y⃗)

∏
i ̸=j(βi − βj) = Res(p, ∂xp) This vanishes identically on W iff p and ∂xp

share a non-trivial factor.
p irred so Res(p, ∂xp) /∈ I(W ), and so {Q ∈ W : Res(p, ∂xp)(Q) = 0} is closed proper so finite in W .

Since preimages are finite, U = {P ∈ V : Res(p, ∂xp)(φ(P )) = 0} is open dense in V , so phas no repeated

root at any pt in U , so p(y⃗,x)−p(y⃗,α(P ))
α−α(P ) ∈ k(V ) is a unit in OV,P for all P ∈ U . Also have p(y⃗, x) ∈ I(V )

by defn, and p(y⃗, α(P )) = p(y, α(P )) − p(φ(P ), α(P )) ∈ mφ(P ), so α − α(P ) is a unit times an element
of mφ(P ).

Remark 9. If remove the set {Q ∈ W : ad(Q) = 0}, then Q has exactly d preimages in V under φ, all
unramified, and so for the ramining points Q ∈W , we have

∑
φ(P )=Q eP =

∑
p1,...,pd

= 1 = d = degφ.

Corollary 8.18. Let V be a curve, and f ∈ k(V )× is a non-zero rational function.

(i) If f is regular on V , then f is constant.

(ii) The set of points P with νP (f) ̸= 0is finite, and
∑

P∈V νP (f) = 0.

Proof. Use A1 → P1, t 7→ (1 : t). View f as a morphism φ : V → P1. For (i), f is regular at P iff
φ(P ) ̸= (0 : 1), so f regular on V =⇒ φ not surj, so const.

For (ii) νP (f) ̸= 0 iff f vanishes at P or 1/f vanishes at P . φ−1(0), φ−1(∞) are finite by hypothesis.
If f is const then νP (f) for all P ∈ W . If f is nonconst, then so is φ. Let t = x1/x0 be a local coord
at (1 : 0), and φ∗ and φ∗t = f , so eP = νP (φ

∗t) = νP (f). Similarly at ∞ 1/t = x0/x1 is a local
coord. φ(P ) = ∞ =⇒ eP = νP (φ

∗(1/t)) = νP (1/f) = −νP (f), so
∑

p∈V νP (f) =
∑

φ(P )=0 νP (f) +∑
φ(P )=∞ νP (f) =

∑
φ(P ) eP −

∑
φ(P )=∞ eP = 0 by previous thm.

8.2 Divisors on Curves

Definition 8.19. A divisor on a curve V is a finite formal sum
∑

P∈V nPP , nP ∈ Z. The set of divisors
is the abelian group Div(V ) =

⊕
P∈V Z⟨P ⟩. The degree

∑
nPP is

∑
nP .

D =
∑
nPP 7→

∑
nP is a hom, with kernel Div0(V ). The set {P ∈ V : nP ̸= 0} is the support of

the divisor D.

Definition 8.20. Let f ∈ k(V )× be a non-zero rational function. The divisor of f is div(f) =∑
P∈V νP (f)P . [By previous corollary, deg(div(f)) = 0.] Any div(f) is a principal divisor on V ; the

principal divisor form a subgroup of Div(V ) (resp. Div0(V )). The quotient Div(V )/{principal divisors}
is the divisor class group of V , Cl(V ) (or Picard group), (resp. degree 0 divisor class group of V , Cl0(V )).

Definition 8.21. D is linearly equivalent to D′ if there exists f ∈ k(V )× s.t. D −D′ = div(f). Write
D ∼ D′.

¬% (Owen’s Signature)

If f, g ∈ k(V ) on a curve V , then div(f) = div(g), then νP (f) = νP (g) for all P ∈ V , so νP (f/g) = 0 for
all P , so div(f/g) = 0, so f/g is constant since it doesn’t give a surje morphism V → P1.

Proposition 8.22. Any degree 0 divisor on P1 is principal, so Cl0(P1) = {0} and Cl(P1) ∼= Z.

Proof. Suppose D is a degree 0 divisor on P1. Write D =
∑
nPP = n∞∞ +

∑
p∈A1 nPP . Note that

n∞ = −
∑

p∈A1 nP . Construct the poly f(t) =
∏

p∈A1(t− P )nP , t = x1/x0. Since 1/t is a local coord at
∞ = (0 : 1), ν∞(f) = −

∑
p∈A1 nP = n∞ as needed

Remark 10. If V is a curve Cl0(V ) = {0}, then for P ̸= Q on V , P −Q = div(f) for some f ∈ k(V ). f
determines a morphism φ : V → P1 with φ−1(0) = P, eP = 1, so degφ = 1 so k(V ) = k(P1), so V ≃ P1.

Definition 8.23. V ⊆ Pn a curve and consider a hyperplane H = Z(L) ⊆ Pn not containing V . The
hyperplane section of V by H is the divisor div(H) =

∑
nPP , where nP = νP (L/xi) for any xi(P ) ̸= 0.

Remark 11.
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1. xi(P ), xj(P ) ̸= 0 =⇒ xi/xj ∈ O×
P =⇒ νP (L/xi) = νP (L/xj) (well-defined)

2. All coeffs nP ≥ 0 for hyperplane section

3. If H = Z(L), H ′ = Z(L′) are two hyperplanes not containing V , then div(H ′) − div(H) =
div(L′/L), so all hyperplane sections have the same divisor class. Call this the hyperplane class

Definition 8.24. The degree of V ⊆ Pn (curve) is deg(V ) := deg(div(H)) for any hyperplane H not
containing V .

If f : V
≃→ W is an isomorphism of curves, then Div(V ) ∼= Div(W ). Principal divisors are identified

so Cl(V ) ∼= Cl(W ). However, degree need not be preserved, e.g., the twisted cubic in P3 has degree
3, but it’s isomorphic to P1. (cf. Veronese embedding) (linear) Change of coordinate on Pn preserves
degree.

If G is homogeneous of degree m, V ⊆ Pn curve, then can define div(G) = div(Z(G)) =
∑
nPP ,

where nP = νP (G/x
m
i ), xi(P ) ̸= 0, so div(G) ∼ m div(H).

Example 8.25. Let V ⊆ P2 be a curve. Claim that there exists a line not tangent to V at any point.
Recall can identify the space of lines {ax+ by + cz = 0} in P2 with points (a : b : c). Consider the map
P 7→ line tangent to V at P is a morphism V → P2, which has image dimension ≤ 1, not surj.

Apply a linear change of coords to assume {x0 = 0} is such a line. Write V = Z(f), where f is
homogeneous of degree d. We have f(0, x1, x2) is a deg d homogeneous poly in 2 variables with no
repeated linear factors, so there exists exactly d pts in V ∩H, so deg(V ) = d.

Definition 8.26. We say a divisor D =
∑
mPP is effective if nP ≥ 0 for all P .

Definition 8.27. Let D =
∑
nPP be a divisor on a curve V . The space of rational functions with poles

bounded by D is L(D) = {f ∈ k(V ) : νP (f) + nP ≥ 0} = {f ∈ k(V ) : f = 0 or div(f) +D is effective}.

The map f 7→ div(f) +D identifies L(D) with the set of effective divisors equivalent to D.
The inequality νP (f + g) ≥ min{νP (f), νP (g)} implies that L(D) is a vector space over k.

• If P /∈ supp(D), this requires f regular at P

• If nP > 0, f has a pole of order ≤ nP at P

• nP < 0, f has a zero of order ≥ −nP at P

Example 8.28. V = P1. Write (0 : 1) =∞. Let D = m(∞), m > 0. Write x = x1/x0. See that L(D)
is spanned by 1, x, x2, ..., xm, so L(D) picks out polys of deg ≤ m, and dimL(D) = m+ 1.

Definition 8.29. ℓ(D) := dimL(D)

Proposition 8.30. Let D be a divisor on a curve V .

(i) degD < 0 =⇒ L(D) = {0}

(ii) deg(D) ≥ 0 =⇒ ℓ(D) ≤ deg(D) + 1

(iii) ℓ(D) ≤ ℓ(D − P ) + 1 for all P ∈ V

Proof. (i) If deg(D) < 0, then no effective divisor can be equiv to D. (iii) implies (ii) by induction
on degD. (iii) Have evP : L(D) → k, f 7→ (πnP

P f)(P ) for any local parameter πP at P . This is a
well-defined homomorphism, with kernel {f : νP (f) + nP ≥ 1} = {f : νP (f) + nP − 1 ≥ 0} = ℓ(D − P ).
The image has dimension 1, so ℓ(D − P ) ≥ ℓ(D)− 1.

Proposition 8.31. Suppose D,E ∈ Div(V ), D ∼ E. Then L(D) ∼= L(E) and ℓ(D) = ℓ(E).

Proof. D − E = div(g) for some g ∈ k(V ). Consider L(D) → L(E), f 7→ fg. f ∈ L(D) iff f ∈
L(E + div(g)) iff div(f) + div(g) + E ≥ 0 iff div(fg) + E ≥ 0 iff fg ∈ L(E).

(>::= (Owen’s Signature)

Theorem 8.32 (Weak Bezout for curves). Any two distinct plane curves intersect. If the degreeso f
curves are m,n, then they intersect in ≤ mn pts.
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Proof. Let F,G be homogeneous in 3 variables, degree m,n resp., call E = Z(F ), D = Z(G) ⊆ P2. Can
find an effective divisor div(G) which has the form

∑
P∈C∩D nPP . WTS 1 ≤ deg(div(G)) ≤ mn. We

know div(G) ∼ div(Ln) for any lienar form L with C ̸⊆ Z(L). Suffices to show that 1 ≤ div(L) ≤ m.
From ES1, ∃P ∈ C ∩ L (L intersects V transversely) s.t. div(L) =

∑
P∈C∩Z(L) P . Change coords so

L = x0, algebraic closure =⇒ 1 ≤ div(L) ≤ m.

Remark 12. For general choice of F,G, |C ∩D| = mn. With correct notion of multiplicity I(C ∩D,P ),
have

∑
P∈C I(C ∩D,P ) = mn. I(C ∩D,P ) = νP (G/x

n
P ) in OC,P = dimkOA2,P /(f, g), where f, g are

dehomogenization of F,G in coords with P ∈ A2.

Definition 8.33. Let X ⊆ Pn be a projective variety of dim m. The degree of X ↪→ Pn is #(X ∩H1 ∩
· · · ∩Hm) for generic hyperplanes H1, ...,Hm

Theorem 8.34 (Bezout for hypersurfaces). Let X ⊆ Pn be a projective variety, F ∈ k[x1, ..., xn] homo-
geneous poly with Z(F ) not containing any componenet of X. Then deg(X ∩ Z(F )) = deg(X) deg(F ).

Proof omitted.

Corollary 8.35. There is no nonconst morphism P2 → P1

Proof in ES3.

Theorem 8.36. If f : Pn → Pn is an iso, then f(x) = Ax for some A ∈ GLn+1(k).

Proof. H hyperplane in Pn, L line, L ̸⊆ H. Then div(H) on L is a pt with coeff 1, so has degree 1, so
div(f(H)) on f(L) has deg 1. f(H) and f(L) have degree 1, so f(H) is a hyperplane. Apply to coord
hyperplanes {xi = 0} = H get f(H) = {a0ix0 + · · ·+ anixn = 0}. Let A = (aji).

8.3 Differentials

K/L field extension. A differential is a k-linear combination of formal symbols xdy with x, y ∈ K s.t.

(1) d(·) is linear.

(2) Leibniz rule d(xy)

(3) da = 0 for a ∈ k.

Definition 8.37. The space of differentials ΩK/k = ΩK is the quotient M/N where M = ⟨δx : x ∈ K⟩
and N is the subspace generated by

(1) δ(x+ y) = δx− δy;

(2) δ(xy) = xδy − yδx

(3) δa, a ∈ k

For x ∈ K, define dx to be the coset δx+N . The map d : K → ΩK/k is the exterior derivative.

Lemma 8.38. Suppose K/k is f.g. with a transcendence basis {x1, ...., xn}. Then if f ∈ k(x1, ..., xn) is
a rational function in x1, ..., xn and y = f(x1, ..., xn).

dy =

n∑
i=1

∂f

∂xi
(x1, ...., xn)dxi

{dx1, ..., dxn} is a basis for ΩK .

Definition 8.39. Let V be a curve, K = k(V ). We write ΩV = ΩK/k, the space of rational differentials
on V . A differential ω ∈ ΩV is regular at P ∈ V if we can express ω =

∑
i fidgi, fi, gi are regular at P .

Definition 8.40. ΩV,P = {ω ∈ ΩV : ω regular at P}

Proposition 8.41. ΩV,P = OV,P dπP for any local parameter πP .
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Proof. ⊇: clear from defn. Partials of g/h regular at P iff h(P ) ̸= 0. dxi generate ΩV,P over OV,P , so
ΩV,P is finitely generated over OV,P .

If f ∈ OV,P , d(f − f(P )) = d(πP g) = gdπP + πP dg ∈ OV,P dπP + πPΩ(V, P ), for some g ∈ OV,P . By
Nakayama (R = OV,P ,M = ΩV,P , N = OV,P dπP , J = mP ), so M ⊆ N .

If πP is a local parameter at P , then πP is transcendental over k, so dπP generates Ω×
V so any differential

ω = hdπP . h depends on the choice of πP , but νP (h) is indep of πP .

Definition 8.42. In the above setting, define νP (ω) = νP (h) for any choice of local parameter πP .
If νP (ω) = 0 then ω has a zero at P . If νP (ω) < 0, then ω has a pole at P . If ω ∈ Ω×

V then
div(ω) =

∑
P∈V νP (ω)P

Lemma 8.43. Let ω be a non-zero rational differential on a curve V . Then νP (ω) = 0 for all but finitely
many P ∈ V . νP (ω) ≥= 0 iff ω is regular at P .

Proof. Note that if ω, ω′ ∈ Ω×
V , then write ω = hdπP , ω

′ = h′dπP , have νP (ω + ω′) = νP (h + h′) ≥
min{νP (h), νP (h′)} = min{νP (ω), νP (ω′)}.

First, if g ∈ k(V ) is nonconst and ω = fdg, then for any P ∈ V , have νP (ω) = νP (f) + νP (dg), so
suffices to show νP (dg) = 0 for all but finitely many P and any nonconst g. By finiteness for curves,
g (when considered as a morphism V → P1) has finitely many poles and finitely many ramified pts. If
g(P ) ̸= ∞ and t is a local coord at 0 on P1, then t − g(P ) is a local coord at g(P ), and f, g is also not
ramified at P , and g∗(t− g(P )) = g − g(P ) is a local parameter at P , so we have

νP (dg) = νP (d(g − g(P ))) = νP (1) = 0

⇒: clear.
⇐: Suppose ω =

∑
fidgi, fi, gi ae regular at P . By valuation inequality, suffices to show that νP (fidgi) ≥

0 for all i, so suffices to show νP (dg) ≥ 0 for all g ∈ O×
V,P . Have dg = d(g − g(P )) = d(πn

Ph), where
n = νP (g − g(P )) and h is a unit in the local ring. If n = 1, then g − g(P ) is a local parameter, so
νP (dg) = νP (d(g − g(P ))) = 0. If n > 1, then apply Leibniz rule

d(πn
Ph) = πn−1

P d(πPh) + πPhd(π
n−1
P ) = πn−1

P d(πPh) + (n− 1)πPhπ
n−2
P dπP

Each term has valuation n− 1, so νP (d(g − g(P ))) ≥ n− 1 > 0.

So div(ω) is a divisor for any ω ∈ Ω×
V .

Definition 8.44. KV = div(ω) is called a canonical divisor for V .

Lemma 8.45. div(ω) ∼ div(ω′) for ω, ω′ ∈ Ω×
V .

Proof. Since ΩV is a 1-dim, so ω = fω′ for some f ∈ k(V )×. By defn, div(ω)− div(ω′) = div(f).

Definition 8.46. We call the class of KV in Cl(V ) the canonical class.

Remark 13. Everything in this subsection depends only on the function fields, so isomorphism-invariant.

Example 8.47. V = P1. Let A1 ↪→ P1, x1 7→ (1 : x1). Define t = x1/x0, then ω = dt is a non-zero
rational differentia. If a ∈ A1, then t− a is a local parameter at a, and dt = d(t− a), νa(dt) = 0. At ∞,
1/t = x0/x1 is a local parameter, and we have d(1/t) = −dt/t2, so ω = −t2d(1/t), so ν∞(ω) = ν∞(t2) =
−2, so div(ω) = −2∞. Since deg(div(ω)) < 0, this is neither principal not a hyperplane section.

Definition 8.48. V a curve. The genus g(V ) = ℓ(KV ), where KV is any element of the canonical class.

Note 0 ∈ L(D).

Example 8.49. g(P1) = ℓ(−2∞) = 0, since degree < 0.

This agrees with the defn in Riemann surfaces if k = C.
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8.4 Differentials on Plane Curves

8.4.1 Plane Cubics

Let F (x0, x1, x2) = x0x
2
2−
∏3

i=1(x1−λix0), λ1, λ2, λ3 ∈ k are distinct. Can check V = Z(F ) is irreducible
and smooth.

Compute its geneus. Dehomogenize w.r.t. x0, get y
2 = (x − λ1)(x − λ2)(x − λ3) = g(x), where

y = x2/x0, x = x1/x0, so 2ydy = g′(x)dx in ΩV . Choose ω = dx/y = 2dy/g′(x). If y(P ) ̸= 0, then
x − x(P ) is a loc. coord for P ∈ V with x0 ̸= 0. So νP (ω) = νP (dx/y) = 0. If y(P ) = 0, thne y
is a loc coord at P and λi distinct =⇒ g′(x(P )) ̸= 0, so νP (ω) = 0. If x0 = 0, have a single point

∞ = (0 : 0 : 1). Dehomogenize w.r.t. x2 to obtain z −
∏3

i=1(t − λiz), z = x0/x2 and t = x1/x2. t is a
local parameter at ∞, i.e., ν∞(t) = 1, ν∞(z) ≥ 3, so ν∞(t− λiz) = ν∞(t) = 1, so ν∞(z) = 3. Note that
ν∞(y) = −3, ν∞(x) = −2.

Lemma 8.50. If h ∈ k(V ) on a curve V , and νP (h) ≥ 2 for P ∈ V , then νP (dh) = νP (h)− 1.

Proof. If νP (h) = 1, then true by defn. If νP (h) ≥ 2, then write h = uπn
P , n = νP (h). Have dh =

uπP d(π
n−1
P )+πn−1

P d(uπP ) = uπn−1
P (n−1)dπP +πn−1

P d(uπP ) = πP (n−1)(u(n−1)dπP +udπP +πP du) =
πn−1
P [undπP + πP du]. u is regular at P so νP (du) ≥ 0, so νP (πP du) ≥ 1, so νP (dh) = n− 1 (∗ ∗ ∗∗)

ν∞(1/x) = 2 so ν∞(d(1/x)) = 1, so ν∞(−dx/x2) = ν∞(1/x2) + ν∞(dx) = 1. Since ν∞(1/x2) = 4,
ν∞(dx) = −3, so ν∞(ω) = ν∞(dx/y) = 0. So the canonical divisor is the zero divisor, so L(0) =
{rational functions on V with no poles} = k, so ℓ(KV ) = 1 = g(V ). For a general plane curve, we have

Theorem 8.51. Let V = Z(F ) ⊆ P2 be a smooth plane curve of degree d ≥ 3. Then KV = (d − 3)H,
where H is the divisor of a hyperplane section on V .

Remark 14. Computation: given x0x
2
2 −

∏3
i=1(x1 − λix0). The projection to (x0 : x1) ∈ P1 has deg 2

[∞ 7→ (0 : 1) with ν∞(x) = −2]; the proj to (x0 : x2) has deg 3 [∞ 7→ (0 : 1) and ν∞(y) = −3].

Proof. Change coords so (0 : 1 : 0) /∈ V . Dehomogenize x = x1/x0 and y = x2/x0 to obtain 0 =
f(x, y) = F (1, x, y), so ∂xfdx+ ∂yfdy = 0, so consider ω = dx/∂yf = −dy/∂xf . Let H = {x0 = 0}, so
div(ω) is supported on H. Now dehomogenizae w.r.t. x2 to get g(z, w) = F (z, w, 1), z = x0/x2 = 1/y
and w = x1/x2 = x/y and consider η = dz/∂wg = −dw/∂zg. div(η) is supported on {x2 = 0} not at
any P ∈ H ∩ V . Note that f(x, y) = F (1, x, y) = ydF (1/y, x/y, 1) = ydg(1/y, x/y). Compute

∂xf = yd∂wg(1/y, x/y)1/y =
1

zd−1
∂wg(z, w)

Since y = 1/z, have dy = −dz/z2, so

ω =
dy

∂xf
=

−z−2dz

(z)1−d∂wg(z, w)
= zd−3η

Since νP (η) = 0 for all P ∈ H, we have νP (ω) = (d− 3)νP (x0/x2) for all P ∈ H, so ω = (d− 3)H since
H = div(x0).

So deg(KV ) = d(d− 3) for a smooth plane curve.

Proposition 8.52. Suppose f(x, y) = 0 is an affine equation for a curve V ⊆ P2. Assume deg V ≥ 3.
Then {xrys : 0 ≤ r + s ≤ d− 3, r, s ≥ 0} is a basis for L(KV )

Proof. By thm, all poles of any elt of L(KV ) are at ∞ (if x = x1/x0, y = x2/x0, this means that
they satisfy x0(P ) = 0). x, y generate k(V ) as a field, so any elt of L(KV ) is a polynomial in x, y, so

monomials xrys generate L(KV ), since x
rys =

xr
1x

s
2

xr+s
0

∈ L(KV ) iff 0 ≤ r + s ≤ d − 3. It suffices show

independence. Note that any non-trivial dependence relation would give a degree < d element of the
(affine) ideal. Contradiction.

Corollary 8.53 (Genus-degree formula for plane curves). If V is a smooth plane curve in P2 of degree

≥ 3. Then g(V ) = (d−1)(d−2)
2

Corollary 8.54. There exists infinitely many non-isomorphic curves.
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9 Riemann-Roch

Theorem 9.1 (Riemann-Roch). Let V be a curve of genus g with canonical divisor KV . Then for any
divisor D, ℓ(D)− ℓ(KV −D) = 1− g + deg(D).

Corollary 9.2 (Genus-degree formula for curves in P2).

Proof. Take D −KV , so R-R implies ℓ(KV )− ℓ(0) = 1− g + deg(KV ), so g − 1 = 1− g + d(d− 3).

↽⇁
⌢
O|

⌢
O
⌣ (Owen’s signature)

Corollary 9.3. If V is a curve, deg(KV ) = 2g − 2.

Proof. Take D = KV . Apply Riemann-Roch, so ℓ(D) = g and ℓ(KV −D)− ℓ(0) = 1.

Corollary 9.4. Let D be a divisor of deg(D) > 2g − 2, then ℓ(D) = 1 − g + deg(D). In particular, if
g = 1, then deg(D) > 0 =⇒ ℓ(D) = deg(D)

Consider φ : V → W a non-constant morphism of curves. φ∗ : k(W ) → k(V ) sends non-constant
t ∈ k(W ) to non-constant φ∗t ∈ k(V ), so ΩW is generated by dt and ΩV by dφ∗t. Given ω = fdt ∈ ΩW ,
define φ∗ω = φ∗(f)dφ∗t.

Lemma 9.5. φ : V → W a non-const morphism of curves. Let P ∈ V , φ(P ) = Q, eP ramification
index of φ at P , πP , πQ local parameters at P,Q resp. Then νP (φ

∗ω) = eP νQ(ω)+eP −1. In particular,
νP (φ

∗dπQ) = eP − 1.

Proof. νP (φ
∗(dπQ)) = νP (d(φ

∗πQ)) = eP − 1. For general ω, write ω = uπ
νQ(ω)
Q dπQ, u ∈ O×

W,Q. Then

φ∗ω = φ∗(u)φ∗(πQ)
νQ(ω)d(φ∗πQ), so νP (φ

∗ω) = eP νQ(ω) + eP − 1.

Theorem 9.6 (Riemann-Hurwitz). Let φ : V → W be a non-constant morphism of curves and let
n = degφ. Then 2g(V )− 2 = n(2g(W )− 2) +

∑
P∈V (eP − 1).

Proof. Let 0 ̸= ω ∈ ΩW , so φ∗ω ∈ Ω×
V , so div(φ∗ω) is KV . By Riemann-Roch, deg(KV ) = 2g(V )− 2, so

2g(V )− 2 =
∑
P∈V

νP (φ
∗ω) =

∑
Q∈W

∑
φ(P )=Q

=
∑
Q∈W

∑
φ(P )=Q

(eP νQ(ω) + eP − 1)

=
∑
Q∈W

deg(φ)νQ(ω) +
∑
P∈V

(eP − 1)

= deg(φ) deg(div(ω)) +
∑
P∈V

(eP − 1)

The first term is n(2g(W )− 2).

Corollary 9.7. If V,W are curves and g(V ) < g(W ), then any morphism φ : V →W is constant.

Corollary 9.8. Let X = V1 × V2 be product of two curves of genus ≥ 1, then X is a smooth projective
surface with no subvariety isomorphic to P1.

Proof. Riemann-Hurwitz applied to the projection maps.

9.1 Equations (not embedding???) of Curves

Definition 9.9. Let V be a curve and D a divisor on V with ℓ(D) = n + 1 ≥ 2. Let B = {f0, ..., fn}
be a basis for L(D). The morphism associated to D w.r.t. basis B is φD = (f0 : . . . : fn) : V → Pn

(nonconst morphism). We say φD is an embedding if it is an isomorphism onto φD(V ) in which case we
say D is very ample.
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A different choice of basis corresponds to a linear change of coords on Pn, so omit B from notation. Let
V ⊆ Pn be a curve, and D = div(x0) a hyperplane section. If P ̸= Q ∈ V , then ℓ(D−P −Q) = ℓ(D)−2.
The same is true if P = Q. Call this (∗). D has (∗) if ∀P,Q ∈ V , ℓ(D − P −Q) = ℓ(D)− 2.

Theorem 9.10. φD is an embedding iff D satisfies (∗).

Proof omitted.

Corollary 9.11. If deg(D) ≥ 2g + 1, then φD is an embedding.

Proof. For D,D − P −Q, we have ℓ(D) = 1− g − deg(D), ℓ(D − P −Q) = 1− g − deg(D − P −Q) =
1− g − (deg(D)− 2).

Corollary 9.12. For fixed genus, if g ≥ 2, then ∃m = m(g) s.t. mKV is very ample.

9.2 Elliptic Curves

Definition 9.13. An elliptic curve is a curve of genus 1 together with a base point P0 ∈ E (written
OE).

Suppose P,Q ∈ E elliptic curve (E,P0). The divisor P +Q−P0 has degree 1, so ℓ(P +Q−P0) = 1,
so ∃ an effective deg 1 divisor equivalent to P +Q− P0, i.e., R ∈ E s.t. P +Q− P0 ∼ R. Distinct pts
on E are inequivalent (since E ̸∼= P1. For any curve of genus > 0, if P ∼ Q, then there exists f with a
simple pole, which would imply that f is an isomorphism to P1), so R is unique. Define P ⊕E Q = R,
i.e., P +Q = R.

Theorem 9.14. ⊕E makes E into an abelian group with identity OE = P0. The map P 7→ [P − P0] ∈
Cl0(E) is an isomorphism of groups.

Proof. Define β(P ) = [P − P0]. If P,Q ∈ E, then β(P +Q) = β(R) = [R − P0] = [P +Q− P0 − P0] =
[P −P0] + [Q−Q0] = β(P ) + β(Q). β is injective since P −P0 ∼ Q−P0 =⇒ P ∼ Q =⇒ P = Q. β is
surjective [let D be a divisor of deg 0, D+P0 has degree 1, so ℓ(D+P0) = 1, so there exists a pt P ∈ E
s.t. D + P0 ∼ P , so D = β(P − P0)].

Remark 15. In genus > 1, the injectivity argument still applies, so V injects into a group. One can show
that this group is a projective variety of dimension g, called the Jacobian of V .

⌢
·.

(Owen’s signature)

Theorem 9.15. Let (E,P0) be an elliptic curve, then 3P0 provides an embedding of E into P2 as a
plane cubic.

Proof. If degD = m > 0, then ℓ(D) = deg(D), so mP0 is an embedding if m ≥ 3. ℓ(mP0) = m for
m > 1, so L(3P0) has a basis 1, x, y where 1, x is a basis for L(2P0), so x is a degree 2 morphism to P1;
y is a degree 3 morphism to P1 by considering preimages of ∞. So (1 : x : y) : E → P2 is an embedding.

1. L(4P0) has basis 1, x, y, x
2

2. L(5P0) has basis 1, x, y, x
2, xy

3. L(6P0) contains these and x
3 and y2, but ℓ(6P0) = 6, so there exists a non-trivial linear dependence

relation necessarily involving both y2 and x3.

Homogenizing, this is a cubic, so E ⊆ Z(F ) for a cubic F . The components of Z(F ) (if smooth) have
genus 0. E is an isomrophism onto its image, so onto a smooth component, which cannot have genus 0,
so Z(F ) is irreducible and E maps onto Z(F ).

Note P0 is the unique pt of E sent to line at ∞. We may assume P0 = (0 : 1 : 0) and that the cubic
has no yz2 term. (P0 unique, z = 0 =⇒ F (x, y, 0) = x3), so F : ay2z + byz2 = G(x, z), so can make

b = 0 by affine change of coord and assume F : y2z =
∏3

i=1(x− λiz).

Theorem 9.16. Let E = Z(F ), F : y2z =
∏3

i=1(x − λiz) an elliptic curve with P0 = (0 : 1 : 0). Then
P +Q+R = OE iff P,Q,R are collinear.

Proof. Consider the map β. See that P +Q+R = OE iff P +Q+R ∼ 3P0 iff ∃ rational function f with
div(f) = P +Q+R− 3P0. Note f ∈ L(3P0). So f is a linear combination of 1, x, y, i.e., L(x, y, z)/z for
a linear L. The zero set of f is precisely P,Q,R, so P,Q,R exists iff such an f exists.
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9.3 More Consequences of Riemann-Roch

Definition 9.17. A curve V of genus g ≥ 2 is hyperelliptic if ∃π : V → P1 nonconst of degree 2.

If V is hyperelliptic, consider D = π∗(∞) (poles of π), then L(D) has dim ≥ 2 since 1, π ∈ L(D). On
the other hand, for Q ∈ V , ℓ(Q) = 1 since V doesn’t have deg 1 map to P1. So ℓ(D) ≤ ℓ(D−P )+1 ≤ 2,
so ℓ(D) = 2.

Proposition 9.18. Let g(V ) > 1 and suppose there exists an effective divisor D of degree 2 on V with
ℓ(D) = 2. Then φD : V → P1 has degree 2 (and φ∗

D(∞) = D), so V is hyperelliptic. All genus 2 curves
are hyperelliptic, and there exists hyperelliptic curve of every genus.

Proof. ES4

Proposition 9.19. g ≥ 3, φKV
is an embedding iff V is not hyperelliptic.

Proof. Suppose φKV
is not an embedding. Then ∃P,Q ∈ V s.t. ℓ(KV − P − Q) ≥ g − 1. ℓ(P + Q) =

ℓ(KV − P −Q) + 1− g + 2 ≥ 2 by R-R. Since ℓ(P +Q) ≤ ℓ(P ) + 1 = 2. Then the previous proposition
implies that V is hyperelliptic.

Conversely, suppose V is hyperelliptic. Then have π : V → P1 of degree 2 with π∗(∞) effective
divisor of degree 2 and ℓ(D) = 2, so ℓ(KV −D) ≥ g − 1 working conversely.

∼
e

\ /
e
O|O
⌣

∼
e (Owen’s signature final version)

10 Blow-ups and Completeness of Projective Variety

This section contains the content of a bonus lecture

Definition 10.1. A variety V is complete if for all varieties Y , π2 : X × Y → Y is closed.

Theorem 10.2. Every projective variety is complete. (proper over the base field)

Blowup of a point on groj space: Let P = (0 : · · · : 1) ∈ Pn and H = Z(xn). Projection πP from P .
πP : Pn −→• Pn−1 regular away from P .

Definition 10.3. The blowup of Pn at P is BlP (Pn) = ΓπP
⊆ Pn × Pn−1.

Note that BlP (Pn) = Z({xiyj − yixj : 0 ≤ i, j ≤ n − 1}). The first projection π1 is a birational
map BlP (Pn) → Pn with π−1(Q) = Q for all Q ̸= P , and π−1(P ) = Pn−1. [Blp(Pn) = {Q, [L] : Q ∈
L} ⊆ Pn × Pn−1. Parametrizes the lines through P .] The second projection q : BlP (Pn) → Pn−1 is the
projection of a locally trivial P1-bundle.

Primary use: birationally identify potentially singular varieties with smooth varieties.

Proof. Step 1: P1 is complete. First assume Y = Pm. Closed subsets are precisely the zero loci
of bihomogeneous polys F (x0, x1, y⃗) = ad(y)x

d
0 + ad−1(y)x

d−1
0 x1 + · · · + a0(y)x

d
1. Two (one-variable)

polys share a root/common factor iff Res(f, g) = 0. Claim that for Z ⊆ P1 × Pm = Z({Res(f, g) :
f, g dehomogenization of F,G ∈ I(Z)}). Can assume wlog that Y = Pm and closed subsets in Y are
restrictions of closed set in Pm, so P1 is complete.

It suffices to show that the second proj of Pn × Pm → Pm is a closed map for all n. Notice that if V
is a proj variety and W ⊂ V a subset with W ∩ Ui closed in Ui then W is closed.

P1 × Ui × Pm Blp(Pn)× Pm Pn × Pm

U2 × Pm Pn−1 × Pm Pm

π×id

q×id π2

π2

Assume Z is closed in Pn × Pm. (π × id)−1(Z) is closed and has closed preimage in each P1 × Ui × Pm.
Since P1 is complete, the left arrow is closed. So (q× id)(π× id)−1(Z) is closed. By inductive hypothesis,
π2 : Pn−1 × Pm → Pm is closed, so the second projection of Z ⊆ Pn × Pm is closed in Pm, so Pn is
complete.

23


	Motivating Examples and Introduction
	The Projective Plane

	Affine Varieties
	Ideals and the Nullstellensatz
	Coordinate Rings and Morphisms
	Proof of Nullstellensatz
	Projective Varieties
	Projective Nullstellensatz
	Functions on Projective Space
	Maps Between Projective Varieties
	Algebro-geometric Correspondence

	Singularities and Tangent Spaces
	Structure of Algebraic Curves
	Maps Between Curves
	Divisors on Curves
	Differentials
	Differentials on Plane Curves
	Plane Cubics


	Riemann-Roch
	Equations (not embedding???) of Curves
	Elliptic Curves
	More Consequences of Riemann-Roch

	Blow-ups and Completeness of Projective Variety

