Analysis of Functions

Kevin

January 2025

1 Review of Basic Concepts

q: (Owen’s signature)

1.1 Probmeas

1. The Lebesgue measure is inner regular, i.e., for all A € B(R"), u(4) = sup{pu(K) : K
A, K compact}.

N

2. Recall that p extends to the y-completion of B, which equals M,, = {BUA: Be B,Ae N, u(A) =
0}.

3. For measurable functions f : E — F, if (F,F) = (R,B) (or (C,B)), then we say that f is Borel.
This extends to maps taking values oo if f=!(+o0) € £. If f takes values in [0, o], then we say
f > 0 (non-negative).

4. Recall MCT and DCT.

1.2 [P-spaces and Approximation
For f: (E,&,u) — R (or C), define

1/p
f||LP=(/ fl”du> , 1<p<oo
E

|fllpee = esssup |f| =inf{A >0:|f| < X ae.}

We use || - ||oo to denote the usual sup-norm. Define LP(E,u) = {f : E — R : meas. ||f|lrr < oo}

Recall Riesz-Fischer Theorem. Also recall the spaces C*(R™), the set of all functions on R" with
continuous partial derivatives up to order k. We note that C°°(R") = (1,5, C*(R"). Note that this
includes unbounded smooth functions. Use subscript ¢ to denote the linear subspaces consisting of
compactly supported functions.

Remark 1. C°(R™) is non-empty, e.g.,

- T lz] <1
Vo) = {O o/w

Theorem 1.1. C°(R") is dense in LP(R™,dz) for 1 <p < oco.
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We admit the following lemma from PM.

Lemma 1.2. C.(R") is dense in LP, 1 < p < 0.



Recall convolution and basic properties including commutativity, associativity, and fRn f*xgdr =
Jgn [ Jgn 9 (translation invariance and Fubini).

Recall multi-index notation a € Z7 is written as o = (az, ..., ;) with order |a| = oy + ... + @, and
we set a! = ag!--- !, and for x € R, we write 2% = z7* --- 28", so the partial differential operator
becomes

(0%

glel oled
© Oz 9z(t..0zpn
In particular D; = D(0;--1,0,...,0)

Theorem 1.3. Let f € L} (i.e., flx € L' for any K C R™ compact), and g € CX(R™). Then

loc

f*geCFR™) and for all 0 < |a| < k, we have
D*(fxg) = f=(D%)
Proof. Recall the translation operator 7,h = h(e — z), z € R™. Then for all u € R™,

r(f * g)(z) = / oz — u—y)f(y)dy

n

Since g € C.(R™) we have |g(z —u — y)| < [|g9]loolx for all |u| < 1, where K = K, 4 is a compact set,
so tht ||g]|eo1 k| f] gives an integrable upper bounde for the integrand. Since g(z —u —y) — g(z — y) as
u — 0, we have pointwise convergence. Apply DCT, we see that f x g is cts.

Now for k = 1, we define difference operators Ve; (standard basis vector) by A} g(z) = w
which converges to D;g(z). We can write
Aulfxg)a) = [ Agle—u)f(u)dy

Apply mean value inequality, get |A? g(x —y)| < ||Digllo1x. Apply DCT, Al (f *g) — f = (D;g), which
is continuous, so f x g € C'. Induction... O

Proposition 1.4 (Continuity of translation in L?). Let 1 < p < co. Then ||7.f — fllzr = 0 asz = 0
for all f € LP.

Proof. Hold for cts functions with compact support. Then apply €/3-argument. O

Theorem 1.5 (Minkowski’s inequality for integrals). Let F': R™ xR™ — R be a measurable non-negative
or dx ® dx-integrable function. Then

\ < [ 18w
Lp R
Proof. Example sheet. O

F(z,)dzx
R’IL

Theorem 1.6 (Mollification/Approximate identity). Let ¢ € C°(R™) be non-negative s.t. [,, p(z)dx =
1. Define o-™¢(-/€), € > 0. Then for 1 <p < oo and any f € L?,

0
If = @e % fllzw == 0
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Proof. For f € LP, x € R",

lpe x f(z) = f(z)| = flx —y)e "o(y/e)dy — f(x)

Rn

[ (e = cwp(w) - f@)iu

< [ 15— - f@)lpudu
Apply Minkowski’s inequality for integrals,
loe s F = flin < [ Wreud = il

This converges to 0 as ¢ — 0 by DCT. O



In particular, since C,(R™) is dense in L? and {¢@. * f : f € C.(R™)} C C°(R™), we have also proved
that C°(R™) is dense in LP.
1.3 Lebesgue’s Differentiation Theorem
Definition 1.7 (Hardy-Littlewood maximal function). For f € L', 2 € R", let

1

M) = et 1B, (@) /5, )

f(y)dy
Lemma 1.8. For f € L', M f maps R™ to R and is Borel-measurable, and for all X > 0,

s MFG) > N < Sl

Proof. Define Ay = {x : M f(x) > A}. If ,,, € Af s.t. @, — 2 € R™. Then

1 /
73 1Br Tm fy dy<)\
| Tm(wm)‘ Rn a ( )| ( )‘

by definition of A§. Apply DCT, get a contradiction, so A is closed, so Ay is open. This gives
measurability.

To prove the inequality, we use the inner regularity of ;1 and take an arbitrary compact subset K C Aj.
K has an open cover {B,_ (z):x € Ax}. Pass to a finite subcover By, ..., By of such balls. By Wiener’s
covering lemma (ES1), reduce to a subcollection osf disjoint balls By, ..., By s.t.

k k k
K< 1B = 5 YN8 < T [ 1wl < Sl
i=1 i=1 i=1 7 Bi

By inner regularity, |Ax| < sup{|K]|: K C Ay cpt} < %Hf”Ll. O
Theorem 1.9. Let f € L*(R™), B,.(z) ball centered at x with radius r. Then

im 1
"0 1B, (@) /B, )

Remark 2. The set of points A = {x € R™ : ({)} are called Lebesgue points of f.

|f(y) — f(z)ldy =0, a.e. (t)
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Proof. Consider

Ay = { im Be@) [ () - Sy > 2A}

BT(I)

Let € > 0. Pick g € C.(R™) s.t. ||f —gllr <e. Then

|/ (z)|dy < |Bl( I |f(y)—9(W)|dy+ 55— l9(y)—g(z)|dy+|f(x)—g(z)]

Bo(a) 1Br(z)| JB, ()

g is unif. cts, so the second term is small. If 2 € A, either the first term or the third term is > X. The
third term is bounded using Markov’s inequality

(o2 1) —g(a)] > ) < L2t o)

For the first term, use HL-maximal inequality,
3TL
[{z - first term > A} < [{w: M(f = g)(2) > A} < - [If = gllzr <37/

Therefore |Ay| < Ce. So |A°| < |U, Ai/nl <32, [A1/n] = 0. O

Remark 3. In particular, for f € L'(R),limy, o f;”h fy)dy = f(x) a.e.



Theorem 1.10 (Egorov). Let E € B(R"), |E| < co. Suppose f; : E — R measurable s.t. f; — f a.e.
on E. Then .
Ve >0, JA. s.t. |[E\ Al <e and f; S f on A,

Proof. By discarding a null set, we may assume that f; — f pointwise on E. Define
B ={x:Vj >k, |fj(x) - f(z)] < 1/m}

Ej" is increasing as k — oo, and |J, E}* = E by pointwise convergence. Pick a subsequence k,, s.t.
|E\ E" | <e27™. Define A. =, E;" . Forall z € A, |f;j(z) — f(z)| < 1/m whenever j > k,, so the
convergence is uniform on A., and

<e

IE\ A <) IE\EY,

Theorem 1.11 (Lusin). Let |E| < oo, f: E — R (or C) Borel-measurable. Then
Ve >0, 3F; s.t. |[E\F.|<ecand f:F. - R cts
Remark 4. Note that f is not necessarily continuous F. when regarded as a map defined on E.

Proof. First prove it for simple functions f = Y"7" | a;14, (wlog assume A; disjoint), where |J 4; = E. Use
inner regularity to find compact sets Kj, C Ay s.t. |Ax\ K| <e/m. fisctsonJ, K and |[E\|J K| <e.
For general f, approximate f ptwise by simple functions on E. Pick A. s.t. |E\ Ac| <e/2s.t. fro = f
unif. by Egorov. Take C,, compact s.t. |E\ Cp,| < €271 Then Take F. = A. N(),, Cin. Can check
that |E\ F;| <e. O

Recall Riesz representation theorem in Hilbert spaces (bounded linear functionals can be written as
taking inner product with a certain element).
Consider two measures i, v on a measurable space (E,&).

Definition 1.12. We say that v is absolutely continuous w.r.t p if u(4) =0 = v(A4) = 0 for any
A e & Wewrite v < p. If v < o and p < v both hold, then we say that u,v are mutually absolutely
continuous.

If there exists B € € s.t. 0 = pu(B) = v(B°), then we say that u,v are mutually singular, and we
write p L v.

Theorem 1.13 (Radon-Nikodym). Let i, v be finite measures on (E,&) s.t. v < u. Then Jw € L'(u),
w>0, st forallAc&, v(A)= [,dv= [, wdp.

Remark 5.
1) w is unique.

2) Will show that [, hdv = [, hwdp for all h > 0 measurable. In particular, w = dv/du (Leibniz
notation) is called the Radon-Nikodym derivative (or density) of v w.r.t. p.

3) The result extends to p, v o-finite.

Proof (von Neumann,). Define a = p1+2v and 8 = 2u+v. On L?(a), consider the map A(f) = [, fdS.
This is bounded since

A < /E 1l <2 /E flda < 20/a(B) | llz2e)

By Riesz, there exists g € L*() s.t. A(f) = [pgfda, ie., [ f(2du+ dv) = [gf(dp + 2dv) for all

f € L?(a). Rearrange,
/ f2=g)dp= / f(2g = 1)dv
E E

Consider A; = {z: g(z) < 5 — %}, J € N. Thus, by taking f = 14,,

5 2
Sh(4)) < /Ef@g* Dy < =5v(4;)
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So, g > 1/2 a.e. (w.r.t. both p,v). Similarly, by considering {x : g(x) > 2+ 1/4}, can prove that g < 2
-, v- a.e. We extend to simple functions and then to non-negative measurable functions by MCT.
Consider f = 1(;.4(x)=1/2}, then get 2u({z : g(z) = 1/2}) =0, so v({z : g(z) = 1/2}) = 0.
Let h > 0 measurable and define f = ;-2 and w = 22;—791 (define it to be 0 if 2g — 1 = 0). Now

2g—1
/ hdl/:/ f(2g — 1)dV:/ f(2—g)d,u:/ hwdp
E E E E
Done by taking h = 14. Note that w € L*(p) since [, wdp = [, 1pwdp = v(E) < co. O
Remark 6.
1) If P is a prob measure on B s.t. P < dx, where dz is the Lebesgue measure, then % = p(x) is the

Lebesuge prob density of P. Moreover, there exists a unique decomposition P = P + P . (ESheet)

2 Dual Spaces
Definition 2.1. Let X be a topological vector space. The top dual space is
X' ={A: X — R linear and cts}

If (X, | - |I) is a normed space, then cts<bounded, and X’ has the operator norm. X" = (X’) is called
the bidual space.

We have a point evaluation map A — A(x) for each z € X. [Note that |A(x)| < ||A|lx/||z]lx <
C||M|x.] Can identify  — (A — A(x)) and regard X as a subspace of X",

Definition 2.2. If X’ = X, then say X is reflexive.

For 1 < p < oo, consider the Holder conjugate ¢ of p. Each g € L? defines a linear functional on
L? by Ay(f) = [ fgdz. This is bounded since [Ay(f)| < |lgllzallflle. In fact [[Ag]l = |lgllrs. Get an
embedding L? C (LP)".

Theorem 2.3. For 1 <p < oo, (L?) = L. For 1 < p < oo, L? is reflezive.
Remark 7. The result is false for p = oo, so L! is not reflexive.

Lemma 2.4. Under the hypothesis of the theorem, let U € (LP)" positive, then 3g € LY s.t. U(f) = A,
and ||U|| = [|gl| a-

Proof of lemma. On R™ consider the finite measure p with density e~1*I* . Further define, for each A € B,
the set function

v(4) = Ule "714) 2 0
To show that v is countably additive, consider A,, € B s.t. A, | ), Am = @ and note v(4,,) =
U(e*|x|2/p1,4m) < HU||||H€7|I|2/p1Am||Lp — 0 by DCT. Hence v is a finite measure. Note that v < p.
[If p(A) = 0, then v(A) < ||U\||\||€_|w‘2/p||Lp = ||U||p(A)*/? = 0] By Radon-Nikodym, 3G € L'(u)
non-negative s.t. v(A) = [, Gdu. Consider a simple function F' =", axla,. Compute

Ue e/ ) :/ZaklAkge_‘x‘zdxz /e_lx‘z/pZaklAkge_‘xlz/qu
k k

Set g = Ge~1*I*/2. Note that {e~1*"/PF : F simple} is dense in L” N {> 0}. Since fg € L' [Note
J1fgl = [1fla=U(f]) < U fllLr < o0]. Decomposing fg into frg — f—g and taking limits, we see
that U(f) = [ fg for all f € LP.

(cf. ESL), have [|gllLe = sup{[|fg|: [Ifllr <1} = U(|f]) < [|U[l < ccand U]l = supy sy, <1 | [ fgl <
lgllza by Holder, so |U]| = [[g]|za- N

Proof of thm. Note (ES) that A € (LP)" can be uniquely decomposed as A, — A_, where Ay are positive
linear functionals (A (h) > 0 for all A > 0 a.e.). Apply the preceding lemma. O

We can characterize duals of subspace of L™, e.g., any finite measure defines a linear functional in
Ce(R™)" by f = p(f).



Definition 2.5. A measure is regular on R" if Ve > 0,VA € B,3C closed, D open s.t. C C A C D s.t.
w(D\C) <e

Theorem 2.6 (Riesz). Let A € (C.(R™))’ be positive. Then 3 a o-algebra M D B and a regular measure
pon M s.t. A(f) = [p. fdp.

Proof omitted.
(B (Owen’s Signature)

3 Weak and Weakx Topology

Definition 3.1. A semi-norm p on a vector space X is a functional p : X — [0, 00) s.t.
1) Yo,y € X, p(z+y) < ple) +p(y);
2) Yz € X,VA € R (or C), p(Az) = |A|p(z)

The collection P of seminorms introduces a ‘locally convex’ topology 7p generated by

Vi(p,n) ={y € X :p(y — x) < 1/n}
forceX,peP,neN.

Definition 3.2. The family P is said to separate points if for any 0 # x € X, there exists p € P s.t.
p(z) # 0.

Therefore (ES) a sequence x,, converges in 7p iff for all p € P, p(z, —x) — 0 as n — oco. This
topology is not generally metrizable unless P is countable. In that case a metric is given by

o0

pl T — )
22 Zl"‘pz x—y))

i=1

Definition 3.3. We say that (X,7p) is a locally convex topological vector space (LCTVS). If it’s
complete, then we call it a Frechet space.

Consider the semi-norms given by pa(z) = |A(x)].

Definition 3.4. The topology 7p induced by P = {pa : A € X'} is called the weak topology 7,,. We
say that x,, — x weakly in X or =, — x if A(x,) — A(z) for all A € X".

Definition 3.5. On the dual space X', we can consider the weak-* topology 7+ induced by P =
{p.(A) = |A(z)| : z € X}. Note that A,, = A weak-x, or A,, —=* A if A, (z) = A(z) for all z € X.

Example 3.6.
1) Consider LP(R,dz). f, — f weakly in L? iff
Vg € L9, / fngdx — fodx ()
Rn R"L
Since LP = (L9), Ay, — Ay weak-x (or f, — f weak-x) iff (1) holds. For 1 < p < oo, weak
convergence and weak-* convergence coincide. (This is true in any reflexive space.)

2) Consider a probmeas on a metric space D (with Borel o-algebra). Let Cy(D) denote the Banach
space of bounded cts functions on D. Then pu(f) defines an element Cy(D)’. A sequence of probmeas
iy, converges to p in 7y if p,(f) = p(f) for all f € Cy(D). (i.e. weak convergence of laws)

Recall Arzela-Ascoli. A sufficient condition for equicontinuity is given by Hoélder continuity, defined

[f(z) = f(y)l
||f|\co~—||f\|oo+sip P

as

where 0 < v < 1 and

o Df(z) — D*f(y
Ifllem~ = Z |D® fl|oo + max sup| (z) 5 )|
0<|a|<m |af=m e ‘Jj o y|

So {f : ||fllcor <1} is compact in C([0,1]) by Arzela-Ascoli.
6



Theorem 3.7 (Banach-Alaoglu). Let X be a normed space. The unit ball By = {A € X' : ||[A||x <1}
of X' is compact in weak-x topology
Remark 8. In (Cy(D))" any sequence of probmeas has a weak-* convergent subsequence.

We will prove Banach Alaoglu for X separable.
T (Owen’s Signature)

Lemma 3.8. For a countable dense subset D = {x1,...,x,} of X, consider seminorms P = {p,, (A) =
!

|A(zr)| : k € N} with induced topology 75. Then Ty« = 75 coincide as topologies on By = {A € X' :
[Allx: <1} and are metrized by

i [A(zx) = A ()|

d~ n =
P(AAN) 26(1 + |A(x) + A ()

Proof. The open sets for 75 are generated by V(xy,m) = {A : [A(zx)| < 1/m}. To prove that the two
topologies are equivalent, it suffices to show that V(x,n) contain some V(zp,m) for all z € X,n € N.
Suppose © € X \ D and pick z € D s.t. ||z —zi| < e. For A € V(zg, m) we have |A(z)| <
[A(zr — @) + |A(z)] < ||Allxe + 1/m < n when € is sufficiently small and m sufficiently large, so
V(zg,m) CV(z,n).

If Aj(zx) iz A(zxy) for all k then ds(A;, A) — 0 by DCT applied to counting measure on N. O
Theorem 3.9. Let A; € Bi. Then 3A € By s.t. Aj, — A weak-*.

Proof. Let D be a countable dense subset of X. Since |A;(zx)| < ||zx]| < co. Diagonalization argument.
Find convergent subsequences A; ; Find a A as the limit of A, ;. Need to show linearity and continuity.
Note that A is unif cts on D. [If x,y € D with ||z — y|| < &/2, then for all j sufficiently large,
|Aj(x) — Az)], [A(y) — Aj;(y)| < /4] Apply triangle inequality to |A(xz) — A(y)|. Note that A, ; is
uniformly Lipschitz. By uniform continuity, we can extend A to a unif cts function on X.

To show linearity, let z,y € X, 2 = z + ay for a € R (or C) and pick 2’,y',2" € D s.t. ||z —2'|| +
lallly = s [ + llz = 2"l < 4.

Apply a big triangle inequality.

[A(2) = A(x) — al(y)| < [A(2) = A()| + [A(z) — A@@")] + [al|A(y) — A(Y)]
<HAE) = Aj D)+ |

each term is small either by unif continuity or unif convergence or linearity of A on D.
Need to show that ||[A]] <1 (|A(z)| < |A(x—2")|+ |A(z")]) and that the convergence holds on X. O

4 The Hahn-Banach theorem and its consequences

Definition 4.1. A functional p : X — R on a real vector space is called sub-linear if
(i) pz+y) <plx) +py) forall z,y € X
(i) p(tx) =tp(z) for allt > 0, z € X.

Lemma 4.2 (Bounded extension). Let X be a real vector space and p : X — R sub-linear Let M C X
be a vector subspace, and for & € X \ M define M = span(M,z) ={M +cr:ceR}. Ifl: M —Risa
linear form s.t. 1(x) < p(x) for all x € M, then there exists | : M — R linear s.t. Iy =1 and I(z) < p(x)
for all z € M.

Proof. Let y1,y2 € M. l(y1) +(y2) = ly1 + y2) <ply1 +y2) <p(y1 —x) +p(y2 + ) forall z € X \ M.
Rearrange, I(y1) — p(y1 — z) < I(y2) — p(y2 + x). Take sup/inf,

sup{l(y) —p(y —x) 1y € M} <a <inf{p(y + ) —l(y) : y € M} (*)

for some a € R. If z € M, then it has a unique decomposition z = y + Az for some A € R. Define

I(z) = l(y+ ) = I(y)+Aa. Toseel < pon M, for A > 0, write I(y+z) = MI(y/\)+a) (2 AUE)+p(¥+
z)=U(%)) = p(y+Az). For A <0,let p = —Xand I(y+Az) = p(l(%—a)) < p(U(L)—U(L)+p(L—2)). O
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To extend [ to all of X (for X separable), we can apply the extension lemma inductively to M,, =
span(M; x1, ..., Z,), Where (2,,)nen is a countable dense subset of X.
In general, consider S = {(N,l): M C N C X vec.sp. , Uy =1, | <pon N}. Apply Zorn’s lemma.

Theorem 4.3 (Hahn-Banach). Let X be a real vector space and p : X — R a sublinear functional. For
M C X wvec. subspace, let | : M — R be a linear functional s.t. I(x) < p(x) for all x € M. Then there
exists an extension | : X — R (linear) s.t. l(x) < p(x) for all z € X.

Remark 9. Extensions need not be unique. If X is non-separable, the result depends on Axiom of Choice.

Corollary 4.4 (Norming Functional). Let X be a normed linear space. For all x € X, there exists a
linear functional A = Ay € X' s.t. ||All =1 and |A(z)| = ||z|lx. In particular, if A(x —y) = 0 for all
A e X', then z =y.

Cl—:( (Owen’s (infinitely handsome) signature)

Proof. For x € X define the vector subspace M = {cz : ¢ € R} and consider the linear functional I(cx) =
cllzllx, so |l(y)] < p(y) = |lyllx. By Hahn-Banach, there exists A = A, : X — R s.t. [A,(y)| < |lyllx, so
A € X" and |[A]| < 1. Note that [|Alx: > sup,cpnpy 1Y) > 2]l x O

Corollary 4.5. The canonical injection of i : X < X" given by z — (A — A(x)) is an isometric
embedding.

Proof. Consider [li(z)|x» = supja <1 |A(®)] < [|z|x. By taking a norming functional, [|i(x)[/x» >
[z (@) = ||| O

If X is reflexive, then X is isometrically isomorphic to (X’)" which is complete. (i.e., reflexive normed

lienar space is Banach.) If X is not reflexive, then X" provides (up to iso) the completion of X for |- || x.
In particular, if X is reflexive ,then the weak topology coincides with the weak-* topology on (X')’,
so Banach-Alaoglu the unit ball Bx is compact in 7.

Theorem 4.6 (Hyperplane Separation). Let A, B be non-empty disjoint convex sets in a Banach space
X over R.

(i) If A is open, then A € X' and v € R s.t. Ala) <y < A(b) for alla € A and b € B.

(i) If A is compact and B is closed, then 3N € X' and 71,72 € R s.t. Ala) < 71 < 72 < A(b) for all
ac A beB.

Proof. (1): Pick ag € A, by € B and let xyg = by — ag. Define C = A — B + zg. C is convex, 0 € C,
2o ¢ C. C is open. Consider the Minkowski functional defined as

pe(z) =inf{t >0:z/t € C}
Can show (ES) that pc is
e sublinear on X
e there exists k > 0 s.t. po(x) < k|jz||

o po(x) <1forz e Cand po(z) > 1 forx ¢ C.

Take
M = {tCEO 1t e R}

and consider the linear functional [ : M — R, txg =t. Then [ is dominated by p¢c since
l(tzg) =t < tpo(xg) = p(tzg) = pe(txo)
for t > 0 and I(txg) = ¢t < 0 < pe(tzy). By Hahn-Banach, there exists A : X — R st. —kljz| <
—pc(z) < A(z) < pc(x) < k|z| for all z € X, s0 A € X'. Pick a € A, b € B. Note that
Aa) — A(b) + A(xzo) = Ala—b+2x0) <pcla—b+x0) <1

So A(a) <supA(A) < A(b). )
(2): A(A) is compact in R and d = ||A — B| x. Then consider Ay = A + Bg/5, where By, = {y :
lyll < d/2 still disjoint from B. Apply (1). O

<
k
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5 Generalized Functions and Distributions

Consider a topological vec. space X C >1 L1(Q, dx), where Q is an open subset of R™. Suppose X
contains C°(Q). Let f € L%, then obtain a linear functional on X given by Af(g) = [, fgdz, g € X. If
the embedding X < L7 is cts, then Ay € X’. Note that g = ¢, is contained in X, mollification implies
A =0 = f=0a.e.. Sowe can identify Ay with f and study the weak- topology of X’ on L.
Define seminorms on C*°(Q), pn (¢) = maxo<|a|<n SUPLex, | D ¢(2)|, where K; C K4y and |J; K; =
). We define the Frechet space £(2) = (C*°(Q), 7p), where P = {py : N € N}. [Note that £(Q) may

contain non-integrable functions.]
Theorem 5.1. There exists a topology 7 on C2°(Q) s.t.

(1) wvector space operations are cts

(2) o sequence @; 20 iff IK C Q compact s.t. supp(¢;) C K for all j and D*¢; — 0 unif. on K for
all 0 < |a| < oo.

(8) If T : C*(Q2) = R (or C) is linear, then it’s cts iff T(¢;) = 0 for all ¢; = 0 in .
proof omitted.
Definition 5.2. We define D = D(Q2) = (C°(2), 7), the space of test functions.

For each ¢ € C°(12), define e 7¢(+/4), then e=¢(-/§) — 0 in D, but j72025¢(- /) does not converge
to 0 in D.

Definition 5.3. Call ¢ € C*°(R") rapidly decreasing if sup,cgn(1 + |2])V|D%¢(z)| < oo for all 0 <
|a| < oo and all N € N.

[Note that e~ l=I" is rapidly decreasing but (14 |])72°*® is not.|
Define seminorms P = {pn : N € N} with

S 14 NDa
by = max sup (1+ [2])" [D"6(x)

Define Frechet space S(R™) = ({¢ rapidly decreasing}, 7). This is metrizable since 7 is countable. This
is called the Schwartz class.

Clearly D(Q2) € £(22), D(R™) € S(R™) C £(R"™) with continuous embedding (ES). We can now define
D'(2) = {T : D(2) — R (or C) linear and cts}, the space of Schwartz distributions. We also define
E(Q) ={T:£(Q) = R (or C) linear and cts} the space of compactly supported Schwartz distributions.
Finally for Q = R™ we define S(R™) = {T : S(R") — R (or C) linear and cts} the space of tempered
distributions. These spaces are equipped with their weak-* topologies of pointwise convergence on D, &, S
resp. Have cts embeddings £’ C D', and E(R™) C S(R™) C D'(R™).

Example 5.4. Consider §,(¢) = ¢(z), then if ¢; — 0in D,&,S , then §,(¢;) = ¢;(z) = 0 as j — oo,
so 0, € E,D,S".

0~0 (Owen’s Signature)
Let f € Li (). Then Ty(¢) = [, fodz, ¢ € D(Q). Have Ty € D'(2) since for ¢; — 0 in D(Q) we

loc
have T¢; — 0 by DCT with dominating function sup;ey (¢l 1x|f| € L' (K compact). Also, Tf =0
in D'(Q) still implies f = 0 a.e. by applying the mollification theorem (ES) to f1p(,) where B(z) is a
ball in © containing = € Q, so L. C D’
If . = "p(-/€), ¢ > 0, smooth, compactly supported, normalized, then for g € D(R"), T, (9) =

g% :(0) = g(0) = do(g) as e = 0. So T, 2% 5, in D'(R™).

5.1 Generalized (Distributional) Derivatives in D’'(2))
Let f € CY(Q), then D;f € L. .. Consider Tp,s. Let p € D(Q)

loc*

/ (D f)pde 2 — / fDigdi = ~T4(Dsp)

9



So we define (for all multi-index «) the generalized derivative of any T' € D'(2) as
(D°T)(p) = (=1)*IT(D*¢)

so DT € D'(Q). If T = Ty and D*T = T, for some f,g € Li _, then say g = D% f the weak partial
derivative of f.

Example 5.5. Let f(z) = 21{;~0}. Consider Tf.

DTy(0) = Ty = - [ ap'(@hte® [ otwdo = [ Hoda

where H is the Heaviside function, so H is the weak derivative of f.
Consider the second derivative.

DT} () = DTi(p) = ~Ta() = — / T = (0) = dolp)

dg cannot be represented by locally integrable functions.
Have D3T(p) = —80(¢’) = —¢’(0) which is a Schwartz distribution but not a measure.

5.2 Multiplication of Distributions with Smooth Functions
If fe Ll and a € C®(Q), the Tos(¢) = [, afe = Tr(ap). Note that ap € D if ¢ € D, so we define

loc
(aT)(p) = T(aw)
for T € D'(Q2) and a € C>(9).

5.3 Compactly Supported Distributions

Proposition 5.6. A linear map T : £(2) — R (or C) is cts iff there exists K C Q compact, N € N,
and C > 0 s.t. for all p € E(Q)

< «
T(p)| < COSI%%N sup |D%p(2)] (1)

Proof. Suppose (f) holds and ¢; — 0 in £(2). By defn of 7p, for j large enough, K C K; and RHS of
(1) with ¢ = ¢, converges to 0, so T'(¢;) — 0, s0 T € £'().

Conversely, assume T is cts but (1) fails. If K; C K, is any exhaustion of compact sets of (2, we
obtain a sequence ; € £'() s.t.

T(p;)| > j max sup |DY(p;
1T ()] joéla\ﬁjzeKj| (¢5)]

Define 1, = ‘wa. Have

1 Dﬁ . ewv. |
D2y < ¢ Do) E
J maXo<|a|<j SUWPgek, [D0j(x)] — Jj
So j — 0in () but T'(;) = 1 for all j. Contradiction. O
Definition 5.7. Say T € D’(2) has support in a closed set K C Qif T'(p) = 0 whenever ¢ € C°(Q\K) C

C(Q).

The last proposition implies that 7' € £’(12) is supported in some compact subset of Q. If f € L} _ s.t.
f = 0 outside of a compact set, then T is compactly supported. If T' € D’'(Q) is compactly supported,
then so is D*T for any «.

Proposition 5.8. Any T € &'(Q2) restricts to T € D'(?) of compact support. Any T € D'(Q) that is
compactly supported extends to T € £'(Q).

Proof. The first claim follows from (f) in the preceding proposition. Conversely, if K is compact and
supports T1. Take £ € C°(Q) s.t. £ =1 on K and define T'(¢) = T(Ep), ¢ € E(), which define an
element of £'(€2). O

10



5.4 Convolutions of Distributions

Notation: Recall the shift operator 7,9 = ¢g(- — ). Let 5 = g(—), and TZg =gz —").
In this notation fxg(z) = Tf(TZg). If g € C(R™), Tog € C°(R™), and we can define for T € D'(R"™),
¢ € D(R™), the convolution
2 T % p(x) = Tlrap)
Theorem 5.9. Let T € D'(R™), ¢ € D(R™), a any multi-index. Then Txp € C°(R™) and D*(T xp) =
(D°T) % =T % (D%p).
Proof. Take e; € R™ (basis vector), and let h — 0. Write
1
h

(2 +he; =) —plw =)
h

[T % p(x + hes) — T x p(x)] = T | £
52 Dilpla — )

in D(R™) and since T is cts in this topology, RHS 30 TDip(x—1)] = T(Twl\sigo) = T*D;p. In particular
T x ¢ is cts for any ¢ € D(R™) and is T * D;p, and by iterating we deduce that T x ¢ € C*°(R™). In
particular, D*(T x @) = T x (D%p).

Need to prove the first equality. Note

D*(1zp) = Dol — ) = (=1)!*|(Dp)(z — ) = (=1)*l7. D%
Vv

Thus (D*) * p(x) = D*T(r,p) = (~1)IIT(D*(1,9)) = 7(r. D) = T * (D). O

Notice if T' € £'(Q), supported in K cpt and K, the shifted support of 7';/@ =p(zx—"), p € CFR").
Thus for |z| large enough, K N K, = @ and T,¢ € D(R™).
Definition 5.10. Let 7)1 € D'(R"), T5 € &'(R™). THen define their convolution by the action

(Ty % T) = p(x) = T1 = (T2 = ¢)(x)

for ¢ € D(R™).
Remark 10. Note that Ty x Ty is assigned on D(R™) as we can consider z = 0, ¢ = ¢(—-) so that
T\ * To(9)(0) = T # Ta(6) for 6 € D(R").
Remark 11. Note that dg has cpt support and dg*xp = dp[¢(z—-)] = ¢(z). Therefore for any Ty € D'(R"),
(Th % o) xp =T1 % (6o x p) =T x , s0 g  [-] acts as a right identity on all of D'(R™).

Theorem 5.11. Let Ty € D'(R™), T3 € £'(R™), a any multi-index. Then
DTy * o) = (DOTy) % Ty = Ty * (D°T)

Proof. Using the previous theorem and the definitions, for any ¢ € D(R"™), we have D*(Ty * T5) thm

(Ty + To) * D0 X Ty« (T x D) "™ Ty % (DT * ) & (T % DY) * . O

5.5 Fundamental Solutions of Linear PDEs

Consider a partial differential operator L = Z‘a|<k aa D%, a, € C®(R™), k € N. Consider Lu = ug for
u,up € D'(R™). A weak solution u is one s.t. (Lu)(p) = ug(p) for all p € D. An element G € D'(R™) is
called a fundamental solution for L if LG = &y in D'(R"™). If G = T, for some g € L{. (R™), then we call
g the Green kernel of G.

Theorem 5.12. Suppose L has constant coefficients ao, € R (or C), and G € D'(R™) is its fundamental
solution. Then, if ug € E'(R™), a solution Lu = ug is given by

u=G=x*ug
Remark 12. If ug € D, then G * ug € C°(R™) and the equation Lu = ugy holds pointwise on R™.

Proof. By linearity and the previous theorem
Lu = Z aaDa(g*UO): Z aa(Dag*Uo):LG*UOZ(so*UO:uO
|| <k lor| <k

Note that the last equality follows from the fact that we can swap dyp and uy when ug is compactly
supported. O
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5.6 Fourier Transforms of Distributions
Recall Fourier transform

fw = [ e s

for f € L'. Since f € L} (R™), we can consider the operator

loc

Tyo) = [ e [ [ f@repdude = 75

R

for ¢ € D. Note that we used Fubini. Since ¢ is not necessarily in D, this defn doesn’t extend to D',
and we choose to work with S(R™) and &’(R™) instead.
Recall Riemann Lebesgue lemma from PM.

Lemma 5.13. Let f € L'(R"), then f € Co(R™).

Proof. For any u; — u in R™, we have e "% f(z) — e " f(z), and this gives a dominating function.
By DCT, f(u;) — f(u), so f is cts. Also have ||f]le0 < Jgn |f(@)|dz = || f||:. For any f € L', take a
sequence f, € C°(R") s.t. fn, — f in L', so that ||fx — fllee < |fx — fllzr — 0 so fr — f unif. on
R”, and fi € Co(R™). Now have |u;|fi(u)| = |D;fr(u)] < ||Djf|lr < oo. By completeness of Co(R™),
f e Co(rR) O

Remark 13. Note that Fourier transform does not map L' onto Cp(R™).

& (Owen'’s signature)

Lemma 5.14. Let f € L*(R").

(i) If fr = A""f(-/A), A >0, then fr = f(hu), u € R"

(ii) Flrafl(u) = e~ f(u), Fle'w) f] = 7, f.

(iii) If g € L', then f+g e L' and F[f+g]=f-§
Proof. Fubini and substitution. O
Theorem 5.15.

(i) Let f € CY(R™), f,D;f € L' for j =1,....,n. Then F[D;f](u) = iu; f(u) for u € R".

(ii) If f € L*(R™) and [, (1 + |z|)|f(z)|de < oo, then for any j = 1,...,n, u € R™, have Djf(u) =
—iFlz; f(x)]. In particular, f € C*(R™)
Proof. (i) For any € > 0, we can pick f. € C°(R") s.t. | fe — fllzr + |Djfe — Djfller < e. [First
approximate by f = f¢, with £ € C°(R") s.t. £ =1 on D(0,M). Approximate f by ¢. * f — fin L'.
Also have Dj(¢e * f) = ¢ % (D; f) = D; f as € — 0.] For such f, we see

FID; f)(u) = / neiw-UDj fo(x)dz 2 — / ) i () da

So
[FD; () = i f(w)] < |FID; f)() = FIDf) ()] + finss (fe () = f ()
<D f = Djfell + lujlll fe = fllze
< (L Jug)e
(i)
FF e hes) = flw) = [ L) - @)
R e
Dominating function |z;|, which is | f(x)|dz-integrable by assumption. O
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Recall from PM.
TheoArem 5.16 (Fourier Inversion). Let f € L' and f € L' Then f(x) = ﬁ Jan eru f(u)de =
FHf(x) ae.

Note that for the unique cts representative of f, the formula holds everywhere.

Note that F~![Fy] = (21 [Fo](—), so F~L is a Fourier transform, and F2p = (27)"p.

Theorem 5.17. F is a linear automorphism of S(R™).

Proof. Can check S(R™) C L*(R™). If f € L', then [ |f| < (sup,ecpn (1 + &))" f(2)) [gn W <
oo. For multi-indices «, 3,

]| DP f(w)| = [FID" (P f)]l(w) < 1D P12 < px(f)

where py(f) is an expression of the form in the previous ineq. If ¢; — 0 in S, have pN(éj) — 0 and
F : S8 — S is cts. Moreover, if F[¢] = 0 for ¢ € S C L', then by the Fourier inversion formula,

¢ = F~1(0) = 0, so F is injective. For any ¢ € S(R"), have F~1F¢ = (2 ~F? qS, which is the fourier
transform of some function, so also surjective. O

Definition 5.18. For T' € S'(R™) we define its distributional Fourier transform T'(¢) = T'(¢) for all

b€ S®™
Remaf’k 14. (Ajlearly by the previous theorem, T € S'(R™). If f € L', then Tf(gb) = f]R" fgbdz Fubini
fRn f¢ = Tf(¢)~

(:{ (Owen’s Signature with Quiff)

Definition 5.19. Call ¢ slowly increasing if sup,cpn (1 + |2]) "V |¢(z)| < oo for some N.

Then T, € S'(R™). Even if T} is given by T, for some g€ LL ., can’t conclude ¢ is pointwise defined.
IfT;, T € S'(R") and Tj — T weak-* in S’(R") then 7} (¢)="T; (¢) = T(¢) = T(¢), s0 F : &' (R") —
S'(R™) is sequentially continuous. One shows further that T =0 = T =0, so F is inj. Define F~!T

via FIT(6) = T(F16) for all 6 in S(R"). F~ = 5 F. Can check F1FT](6) = T(4).

(277)"
Theorem 5.20. F (Fourier transform) defines a linear automorphism of S8'(R™).

Remark 15. Recall Plancherel from PM. F extends to the completion by unif continuity. Get an isometry
or )n/2.7-' of L2 =TTALZ" . If we define FT(¢) = T(Fp) = T() for all ¢ € S C L' N L2, then see that

F =FonSh
For any finite measure p on R", have ji(u) = [, e”**“du(z). Then

1,(6) = Tu() = / e adudute) = 730)

FT, = Tj, in S'(R").
For T € &'(R™), can define E(u) = T(e~*). Can show that 7' = T in S'(R") with E slowly

increasing.

Note that the product of a slowly increasing func with a rapidly decreasing func is again rapidly
decreasing, i.e., in S. For T € &', define aT for a € C* slowly increasing by (aT')(¢) = T'(a¢) for ¢ € S.
For any T € D'(R"), define (7, T)(p) = T(7— o) for k € R™.

Lemma 5.21. Let T € S'(R™) and o any multi-index
(i) F(r,T) = e )T and Fle ") T) = 7,T
(ii) FID*T) = il*u®T and DT = (—i)l* FlzoT)
Proof. Compute. O

Remark 16. F[D*8g] = il*lu®. So the FT of partial derivatives of Dirac measure span the space of polys.

Owen is ill today
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5.7 Periodic Distribution
Definition 5.22. T € D'(R") is periodic if 7,7 = T for all k € Z"

Definition 5.23. For T' € £'(R"), define the periodization Tper = >, cpm 7w T
The fundamental cell of the lattice is @ = [—1/2,1/2)". The indicator 1g is not smooth.
Lemma 5.24. There exists ¢ € C°(R™) s.t.
(i) >0
(i) supp ¥ C Int(Q) where Q = [—1,1]™.
(1) D pepn (x — k) =1 for all z € R™
If ¢’ is another such function and T is a periodic distribution, then T(¢) =T(¢').
Call this ¥ a periodic partition of unity (ppu).

Proof. Find ¢ € Cg° supported in Int(Q) s.t. ¥o = 1 on Q. Define S(x) = >, .4 Yo(z — k). Normalize

P(x) = Yo(x)/S5(x).
If T is a periodic distribution, then

TW)=T(>  10'y) =Y 7, T(Wrt)) => T rg0) = T(t)")
geZ™ g g

O

Can take 19; — 1o ptwise and sup; [[1o j[|c < oc. Obtain a uniformly bounded sequence of ppu
ﬂg — IQ.
Definition 5.25. For T € D’(R") periodic, define the mean of T as M (T') = T'(¢)) where v is any ppu.

Theorem 5.26. Let E'(R™). Ty, converges in S'(R™). If T € D'(R™) is periodic, then there exists
Ve R st T =5, p. 1,V in D'(R".

Proof. For T € &', have a cpt set K C Bp (ball of radius R) and N,C > 0 s.t. forall ¢ € £

geL™

T(¢)| <C  sup [D%(x)|
zeK,|a|<N

Have 1+ |g| <14 |g+z[+|z| <1+ |g+z|+ RS (1+R)(1+ |g+z), so

(1+RM1A+ g+ =)™
N G P

forany M e N. Forallp € S C €&,

M
WHERIT o (1419 +a])™|D6(a)

Tol < C—rr—~2—
T < O g™ e S0y

Applies to 74¢, get a similar inequality.
Since Y-, czn (1 +1g])™"~" < 0o we deduce

1> 1 Tol <C" sup (1+[y))" T D(y)l
g

yER™,|a|<N

so >, 74T € S" by ES.
For the converse, let T' be periodic and ¢ € D. If ¥ is any ppu, have

To=T(¢Y 1) = TW7_g0) =Y (W) (T—g0) = > _ 74(¢T)(9)

g
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= (Owen’s Signature)

Theorem 5.27 (Convergence of Fourier series in S’). Let U € D'(R") be periodic. ThenU =3 7. ugT,

€2mg
i(2mh,

in 8’'(R™), where earp, =€ ) and with Fourier coefficients ug = M(earp)

Lemma 5.28. IfT € &' s.t. (e— —1)T =0 for all k € Z", then T' = 3 7. cg02rq in S'. Have
legl < C(1+ |g|)N for some N,C >0
Proof. Let A* = {27g : g € Z"}. Take ¢ € D(R") s.t. suppp NA* = @, so (e, — 1)"tp € D and
T(p) = (e — 1)T((e—x — 1) '¢) = 0 for all k, so T is also supported in A*. Now take ppu ¢ and
consider 1) = (-/(2m)). suppy C {z € R" : Vi, =27 < z; < 27} and }_ 7. Torg¥ = 1 on R™. Now
define T, = (Targt)T which is supported in {27g} and have dgezn Tg = Zg(Tg,rglz))T =T (in D') and
(e_r — )Ty = (Tang¥h)(e_x — 1)T for all k € Z.

Choose k = g; (j-th standard basis vector), have (e_—1)T, = (e 7% —1)T}, = (e~ @i =279 _1)T, Taylor
(xj — 2mg)K(x;)T,, where K is the Taylor poly which doesn’t vanish near 27g, so (z; — 2mg)T, = 0.

Take ¢ € S(R™) and apply Taylor expansion to get ¢(z) = ¢(2rg) + Z?Zl(mj —27mg)¢;(x) for some
j €S, 50 Ty = Ty(¢(2mg)) + 325, () — 2mg)T$; = dang(9)Ty(1). Let ¢g = Ty(1).

legl = [Ty (32, Terg )| = [Ty(T2ng¥)|. Since Ty € €' C S and we have a characterization of §" in
ES3, have |¢y| < Cosup,epn joj<n (1 + |z))N|D*)(z — 2mg)| for some N € N, ¢ > 0, and < Cy(1 +
|z|) Y SUPyern ja<n| (1 + )N DY (y)| < C(1 + |g|)N. Therefore T = >4 Cg02rg converges in &' O

Proof of Thm. Apply the lemma to U. U = (27)" > gezn Ugbang, Uug = cg/(2m)". Take inverse FT, see
U = > gezn Ugle,,,. Note that T — MI[T] is cts on &', so M(e—2x,U) = >° czn ugM(e—2xkTe,,,) =
Jo e2m{9=k.2) d = 1 if g = k and 0 otherwise. O

Apply thistoU =Y, 0k = Y, 7o with ppu ¢ s.t. 1(0) = 1. Compute Fourier coeffs. M(e_o,U) =
Yok Ok(e—2rg®) = 1 for all g, 80 Y ) yn Ok = D ey Teyy, in S’ Testing this identity on ¢(z — -) for
peS, xeR Get Y, d(x — k) = 3, Toy. bz — ) = 32 €22 ¢(2rk) (Poisson summation formula
when x = 0).

[Owen Broke WTEX Today]

6 Sobolev Spaces and Elliptic PDEs

Let C*(Q) denote th normed space {f : @ — R : D*f exists for all 0 < |a| < k, |f|lcx < oo}, where
[fller = 20<ia1<k 1P flloo- Similarly define the Holder spaces for 0 <n < 1as Ckn(Q) = {f € Ck(Q):

[ fllrn < oo}, where |[fllcrn = [l fllk + X2 0)=k SUP22y W. C* and C*" are Banach spaces.
We can replace || - |00 and D* by LP-norm and the weak derivative DS.

Definition 6.1 (Sobolev space). Let k € Z>g, 1 < p < co. Then f € W*P(Q) (Q open) if DX f € LP
for all 0 < |a| < k. Then norm on W*P(Q) is given by

1/p
fllwee = D IDgfIEs
0< o<k
if p < 0o and
[/ lwe = mae 1D5 1

When Q =R"™, p =2, have
Definition 6.2. Let s € R. Then H*(R") consists of f € S'(R"), (f = Ty), s.t. fe L% (R™) and
£ 17 = Jon [F)P(L + [uf?)*du

Note that H*(R") is a Hilbert space for the inner product (f,g)ms = [z Fw)g(w) (1 + |ul?)*du, so
H* = L*(us) for some measure p, on R”.
By Plancherel, for s > 0, H*(R") consists of elements of L?(R", dz)
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Proposition 6.3. For s > 0, H*(R") = W*2(R") with equivalent norms
Proof. O

Theorem 6.4 (Sobolev embedding). Let s > n/2+k for k € N and f € H®. Then 3f* € C*(R") s.t.
f*=f ae and ||f*|lcx < Csnilfllms. In particular, there is an embedding H*(R™) — C*(R™).

Remark 17.

{@}: Have H* C C*"if s > & + k+1.
(2,8} Moo H* € C%(®Y)

Proof. Take f € S(R™) and note

D f ()] = |F~ u®f]

1 all £ (1+|u|2)8/2
o / Al

= o () (o)

é Cs,n,k”fHHs

INE

For f € H*® take f, € S s.t. f, — f in H® and a.e. (pass to a subseq if necessary). This is Cauchy in
H* and by the same inequality in C*, we have f, — f* in C* by completeness. By uniqueness of limit,

we have f* = f a.e. so f* = f. O
Consider
~Viuto=f (t)
where f € H*(R"). Have Fourier transform V2 = —|u/2.

Theorem 6.5. There exists a unique solution v in H*T2(R™) to (1) and ||[v||gsr2 < || fllms (elliptic
regularity estimate)

Proof. Take FT get (1+ |u)?)0 = f in S'(R™). For f € L} . this has unique soln ¥(u) = 1’372)‘2, u e R",

_ )
Jolfes = [l s

so v = F 1.
= |I£11Z
O

To study eqns restricted to open sets 2 C R™ with boundary 0f2, need to define the restriction of
f € H?to 00 If f e H? for s >n/2, then Sobolev embedding implies that f € C¢ for some € > 0 and
the Sobolev trace f|sq exists by uniform continuity. For general s > 1/2, have

Theorem 6.6 (Trace thm). There erists a bounded linear operator T : H*(R"™) — H1/2(R"~1),
s > 1/2, s.t. forall f € S(Rn), Tf= fI]Rnflx{o}

Proof. ES O

Call T = Ty for ¥ = R"~! x {0} the boundary trace of f € H*. By change of coords, this operator
extends to Thq for sufficiently regular Q. In particular, we have Thq : HY(R™) «— H/2(0Q) < L?(09)
is bounded linear.

6.1 HLQ)

Any f € C(Q) (sufficiently regular ) extends by zero to an element of H!'(R™) (hence in H*(R") for
all s). Have Hilbert norm

1l ey = /Rn(l + [u*)I|f(w)Pdu = (27r>"/ﬂ<|f(x>|2 +|Df(@)P)de

where Df is the gradient vector. Define HE(Q) = C’;?O(Q)”'”Hl in H1(R"). This is not W12 because
16



Proposition 6.7. Let f € H}(R™). Then f(z) = 0 for almost every x € Q¢ and if OQ is sufficiently
reqular, then Toqf = 0.

Proof. Take ¢ € C((2°)°) and take f, € C(Q) st. f, — f in HY(R™). Have A,(h) = [;. oh,
then A, € (L?) C (H'), 50 0 = [p. 0fn = Ap(fn) = Apf = [@f =0, so supp(f) € Q. Similarly,
0="Toafn = Toaf =0,s0 f =0 on 0. O

Consider the BVP

~VZ2u+v=f onQ
v=10 on 02

Interpret this as
/(—V%—i—v)g@ﬁu Vv-VgD—l—/UsO:/fSO
Q Gle) Q Q
for f € L?, v € H.

Since C2° is dense in H} and L2, this equation is the same as solving

<U,<,0>H1 = <f7 <)0>L2 (T/)
for all € HL(Q).

Theorem 6.8. For eveyr f € L*(Q), there exists a unique v € HE(Q) s.t. (1) holds and ||v|| g1 = || f]|12-
Therefore the solution map S : f — v = vy is a bounded linear form L*(Q) — Hg(Q) and self-adjoint
for L2(9).

Proof. Define A¢(¢) = [, f¢ so that Ay € (Hj)' since

A @) 1zl bllze < 11zl ol

Hence by Riesz representation thm on H}, there exists a uniuque v € H} s.t. (v, ¢) g1 = (f, )2 for all
¢ € Hp.
Next take fi, fo € L2(R2), a € R, and take v; = S(f1) and v = S(f>) and define v = vy +avy. Then,

(v, 0) a1 = (v1 + avg, @) g1 = (v, Q) 1 + a2, @) == (f1,0) 12 + fo, ®) 2 = (f1 + afa, d) 12
So S(f1) +aS(f2) = S(f1 + afz). Also have

Riesz
ISl = lloglle =" A2 < N1 £z

To see it’s self-adjoint,

(S(f), 90> = (9, 5(f))r> = (S(f), S(9)) r = (S(9), S(f)) rr = (£, 5(9)) 2

To study regularity of v, we introduce
Hio(Q) = {f € Lo (Q) : VE € C2(Q), f€ € H*(R")}

Proposition 6.9. If f € H; for s >k+n/2, then f € C*(U) for any U open s.t. U C Q.

loc

Proof. Given U, pick ¢ € C® sit. & = 1 on U and note that f¢& € H*(R") C C*(R"™) (Sobolev
embedding), so f = f€on U, the result then follows. O

Corollary 6.10. (., H;.(2) C C>®(Q).

>0
Note that f € C°°(2) may be unbounded at 9.

Theorem 6.11 (Interior regularity). Let f € L*(Q2) and suppose v € H} solves (1'). Then v € HE (D).
If additionally f € L*(Q) N HE _(Q), then v € HET2(Q).

loc loc

17



Proof. Let K C Q be any compact set, and take y € C°(Q) s.t. x =1 on K. Take ¢ € S(R™) and set
¢ = xp € Hi. Then (') implies

/(Dv-D(wawx)dx:/fcpxdw
Q Q

for all ¢ € S(R™). Using chain rule and IBP, we rearrange the equation above to get
/Q (D(vx) - De + vxep)dz = /Q gpda

where g = —(Dv) - (Dx) —vDx + fx € L?(R"). IBP again, can see that vy solves —V2(vy) + vy = g in
S'(R™). Hence by elliptic regularity estimate, |[vx| gz < |lg]lr2 < oo.

To prove v € HE ., take £ € C°(Q) and K = supp(§) s.t. v€ = vx€. Then |[v€|lgz = loxé|lm: <
Crllox|lz2ll€lle < oo (Ifgllee < | fllz2llgllL= + chain rule) We recognize that g € H () whenever
[ € HL . () so repeating the preceding argument given v € H . Can prove the rest of the theorem

using the inequality [|fgllre < Cn sl flla-llgllc: =

Corollary 6.12. If f € C°(Q)NL3(Q), then v € HH(Q)NC>(Q) solves —V2v+v = f on Q (pointwise)

Theorem 6.13 (Rellich-Kondrashov). Let @ C R™ be open and bounded. Let u; € H}(2) s.t. |lujllm <
K for all j =1,2,..., and some K > 0. Then Ju € H}(Q) s.t. uj, — u in L*(Q) along a subsequence.

Proof. By Banach-Alaoglu in H{(£2), we obtain uj, — u in H} and then in L? (weakly), and |u||z: < K.
Also u;, , u vanish a.e. on Q¢ so

1 . .
s, —ullzz() = lug, — ullp2@ny = WH% — | 2 mn)

1
= i, (2) —a(2)|*dz i, (2) —a(2)dz
5 (/|Z|>R| w @i [ () - ate) )

Given ¢ > 0, have

2

H_iRQ(”Uij?{l + [lullzn) < e

2'2
[ —ar s [ R @R + fi)R <

2>r L+ |2

for R sufficiently large.
For z € R™ fixed,

U, (2) = / e_m‘zujk(x)da: = / e Fy; (v)dr = (e_i<"z),ujk> — (e_i<"z>,u>Lz(Q) = u(z)
n Q
by weak convergence. Also

cs.
a5, () + 12(2)] < llujllzre) + lullzre) = Collugllrze) + lullzz@) < 2CoK

which is dz-integrable on {z : |z] < R}, so f|2|<

5, (2) — 4(2)]*dz — 0 by DCT. O
Corollary 6.14. The solution operator S from (1') is a compact linear self-adjoint operator on L*(Q)
Proof. S maps L? into H} (bounded linear) and use Rellich-Kondrashov. O

By spectral theorem, there exists ONB {wy, : k € N} of L2(€2) and real e-values jy | 0 as k — 00 s.t.
Swr = prwg

in L2(Q). Thus wy € H}. For all ¢ € H}

T/
(Wi, @) 12 © (Swi, )1 = por Wk, ©) H1

18



Tes ¢ = wy, see that 1 = (wg, wi) 2 = pk||wk|| g1, so px > 0 for all k. In D'(Q),

1
(~V2 4 Dy, = (<92 4+ D)2y, = (<92 4 1wy, = 2%

j> Mk M
Therefore,
1
—VQ’U)k = ( — 1) WE = )\kwk
M
where A\, = 1 — 11 0o are the e-values of —V?2. The weak form is

122
(Dwy, Do) 2 = Ap(wy, @) 12

for all k and all p € D(Q) (in fact H(Q2)) Note that wy = f in (') and in H}, so iterating the interior
regularity thm, wy € C°°(Q). Thus —V2wy, = A\ywy, is true on Q ptwise.

Theorem 6.15 (Poincare inequality). For all u € H}(Q),

(Du, Du) 2 S>>0
<’U/7 ’U,>L2
Proof. ES O
We can now solve the Dirichlet problem for the Laplace equation
—V2u=f on{
v=20 on 0f)

or the weak form: find v € Hg (Dv, D)2 = (f,¢) 2 for all p € D(Q). Denote this by (*)
Theorem 6.16. There exists a unique solution v € H} () to (x), for any f € L*(Q).

v= Z /\i<wkv 2wy

Proof. Take partial sums vy = Zizl A Hwg, £ p2wy, J €N, then (for J' < J)

||UJ—UJ/H%11 = <’UJ—’UJ/ ’UJ—’UJ/>L2—|—<D(UJ—1)J/),D(UJ—UJ/)>

J
= Z )\ wk7 Z )‘lzl)‘];’1<f7wk><f7wk’><DwkaDwk’>L2
k=J'+1 kok/=J+1
J
= Z A g, f > AN w) (e )N (w, wie) 12
k=J'+1 kok/=J+1
< D A (k£
k=J'+1
> ’
<Cn) Y (fown)? =50
k=J'+1
So vy is Cauchy in Hg, so v € H} Can check
. o0
(Dv, D)z 2 (0, ~V2p)re = Y Ay v, wi) 2 (wy, — V) 12
k=1
Z U, Wk) 12 (W, ) 12

k=1
= (v, )12

We used that (wy,, —V2@) 2 = (Dwy, D)2 = A\ {wy, @) 2.
Need to show uniqueness. Suppose v/ € H(2) s.t. (x) holds. Then let w = v — v € H}(Q

where (Dw,Dg)r2 = (f — f,@)r2 = 0 for all ¢ € H} (). Now |w||}: = (w,w)r2 + (Dw, Dw) e

(% + D){Dw, Dw) 2 =0, 50 w =0 a.c.

~

CTIA

Remark 18. One can also show interior regularity estimates to deduce that for f € C*°(Q) N L?() then
v e C®(Q).
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7 Variational Problems* (non-examinable)
Consider minimizing a functional F(u) = ||ul|%. — (f,u)r2 over H}(€2), where f is fixed in L?(Q)

Theorem 7.1. Let f € L*(Q). Then inf{F(u) : u € H}(Q)} > o > —oco. Moreover, there exists a
unique w € H s.t. F(w) = o, and w solves the PDE —NV?*w + w = f in the weak sense.

Proof. Use the inequality ab < a?/2+b?/2 for a,b > 0. By Cauchy-Schwarz, F(u) = ||ul|%. —2(f,u)r> >
lull2 =20 flzzllallze > lal, — 20012 - LulZs > Sl — 21012 > ~2)fls > —oc.

Then take uy € Hj s.t. F(ur) — 0. WLOg, assume |F(ug)| < F < oco. Then, |lug|%:, = F(ux) +
2(f un) g2 < F+ 20 fllzalluplls < F + 20 f 125 + LluglZpspy- Subtracting we see |[u %, < 2F + 4] £,
for all k, so uy is bounded in Hi. By Banach-Alaoglu, there exists ug;, — w weakly in H} and L?
for some w € H} (). By sheet 2, know that [Jwl]|%,, < liminf [jug,||3: and (f,w) = Um(f, us,) 2. We
have F(w) = [|w||3;: — 2(f,w)r2 < liminf(|lug, || g2 — 2(f, ur,)r2) = 0, and F(w) > o by defn of inf, so
F(w) =o.

To prove uniqueness, it suffices to show that w solves the PDE. For all v € H}, t € R, we have
F(w) < F(w + tv) and %F(w + tv)|4=0 = 0. Then F(w + tv) = ||w + to||3, — 2(f,w + tv)2 =
Hw||%,1 +t2||v||i[1 +2t{w, v) g —2t{f,v) 2 —2(f, w) 2, sO %(F(ertv)) = 2t||v]| g2 +2((w, v) g1 — (f, V) 12).
At t = 0, must have (w,v) g = (f,v)2 for all v € H}. O
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