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1 Review of Basic Concepts

q: (Owen’s signature)

1.1 Probmeas

1. The Lebesgue measure is inner regular, i.e., for all A ∈ B(Rn), µ(A) = sup{µ(K) : K ⊆
A, K compact}.

2. Recall that µ extends to the µ-completion of B, which equalsMµ = {B∪A : B ∈ B, A ∈ N , µ(A) =
0}.

3. For measurable functions f : E → F , if (F,F) = (R,B) (or (C,B)), then we say that f is Borel.
This extends to maps taking values ±∞ if f−1(±∞) ∈ E . If f takes values in [0,∞], then we say
f ≥ 0 (non-negative).

4. Recall MCT and DCT.

1.2 Lp-spaces and Approximation

For f : (E, E , µ) → R (or C), define

∥f∥Lp =

(∫
E

|f |pdµ
)1/p

, 1 ≤ p <∞

∥f∥L∞ = ess sup |f | = inf{λ ≥ 0 : |f | ≤ λ a.e.}

We use ∥ · ∥∞ to denote the usual sup-norm. Define Lp(E,µ) = {f : E → R : meas. ∥f∥Lp <∞}
Recall Riesz-Fischer Theorem. Also recall the spaces Ck(Rn), the set of all functions on Rn with

continuous partial derivatives up to order k. We note that C∞(Rn) =
⋂

k≥0 C
k(Rn). Note that this

includes unbounded smooth functions. Use subscript c to denote the linear subspaces consisting of
compactly supported functions.

Remark 1. C∞
c (Rn) is non-empty, e.g.,

ψ(x) =

{
e

1
|x|2−1 |x| < 1

0 o/w

Theorem 1.1. C∞
c (Rn) is dense in Lp(Rn, dx) for 1 ≤ p <∞.

⟨- : (Owen’s signature)

We admit the following lemma from PM.

Lemma 1.2. Cc(Rn) is dense in Lp, 1 ≤ p <∞.
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Recall convolution and basic properties including commutativity, associativity, and
∫
Rn f ∗ gdx =∫

Rn f
∫
Rn g (translation invariance and Fubini).

Recall multi-index notation α ∈ Zn
+ is written as α = (α1, ..., αn) with order |α| = α1 + ...+ αn and

we set α! = α1! · · ·αn!, and for x ∈ Rn, we write xα = xα1
1 · · ·xαn

n , so the partial differential operator
becomes

Dα =
∂|α|

∂xα
=

∂|α|

∂xα1
1 ...∂xαn

n

In particular Di = D(0,...,1,0,...,0)

Theorem 1.3. Let f ∈ L1
loc (i.e., f1K ∈ L1 for any K ⊆ Rn compact), and g ∈ Ck

c (Rn). Then
f ∗ g ∈ Ck(Rn) and for all 0 ≤ |α| ≤ k, we have

Dα(f ∗ g) = f ∗ (Dαg)

Proof. Recall the translation operator τzh = h(• − z), z ∈ Rn. Then for all u ∈ Rn,

τz(f ∗ g)(x) =
∫
Rn

g(x− u− y)f(y)dy

Since g ∈ Cc(Rn) we have |g(x − u − y)| ≤ ∥g∥∞1K for all |u| ≤ 1, where K = Kx,g is a compact set,
so tht ∥g∥∞1K |f | gives an integrable upper bounde for the integrand. Since g(x− u− y) → g(x− y) as
u→ 0, we have pointwise convergence. Apply DCT, we see that f ∗ g is cts.

Now for k = 1, we define difference operators ∀ei (standard basis vector) by ∆i
hg(z) =

g(z+hei)−g(z)
h

which converges to Dig(z). We can write

∆i
h(f ∗ g)(x) =

∫
Rn

∆i
hg(x− y)f(y)dy

Apply mean value inequality, get |∆i
hg(x− y)| ≤ ∥Dig∥∞1K . Apply DCT, ∆i

h(f ∗ g) → f ∗ (Dig), which
is continuous, so f ∗ g ∈ C1. Induction...

Proposition 1.4 (Continuity of translation in Lp). Let 1 ≤ p < ∞. Then ∥τzf − f∥Lp → 0 as z → 0
for all f ∈ Lp.

Proof. Hold for cts functions with compact support. Then apply ε/3-argument.

Theorem 1.5 (Minkowski’s inequality for integrals). Let F : Rn×Rn → R be a measurable non-negative
or dx⊗ dx-integrable function. Then∥∥∥∥∫

Rn

F (x, ·)dx
∥∥∥∥
Lp

≤
∫
Rn

∥F (x, ·)∥Lpdx

Proof. Example sheet.

Theorem 1.6 (Mollification/Approximate identity). Let φ ∈ C∞
c (Rn) be non-negative s.t.

∫
Rn φ(x)dx =

1. Define φ−n
ε φ(·/ε), ε > 0. Then for 1 ≤ p <∞ and any f ∈ Lp,

∥f − φε ∗ f∥Lp
ε→0−→ 0

◦−; (Owen’s signature)

Proof. For f ∈ Lp, x ∈ Rn,

|φε ∗ f(x)− f(x)| =
∣∣∣∣∫

Rn

f(x− y)ε−nφ(y/ε)dy − f(x)

∣∣∣∣
=

∣∣∣∣∫
Rn

(f(x− εu)φ(u)− f(x))du

∣∣∣∣
≤
∫
Rn

|f(x− ε)− f(x)|φ(u)du

Apply Minkowski’s inequality for integrals,

∥φε ∗ f − f∥Lp ≤
∫
Rn

∥τεuf = f∥Lpφ(u)du

This converges to 0 as ε→ 0 by DCT.
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In particular, since Cc(Rn) is dense in Lp and {φε ∗ f : f ∈ Cc(Rn)} ⊆ C∞
c (Rn), we have also proved

that C∞
c (Rn) is dense in Lp.

1.3 Lebesgue’s Differentiation Theorem

Definition 1.7 (Hardy-Littlewood maximal function). For f ∈ L1, x ∈ Rn, let

Mf(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

f(y)dy

Lemma 1.8. For f ∈ L1, Mf maps Rn to R and is Borel-measurable, and for all λ > 0,

|{x :Mf(x) > λ}| ≤ 3n

λ
∥f∥L1

Proof. Define Aλ = {x :Mf(x) > λ}. If xm ∈ Ac
λ s.t. xm → x ∈ Rn. Then

1

|Brx(xm)|

∫
Rn

1Brx (xm)|f(y)|dy ≤ λ

by definition of Ac
λ. Apply DCT, get a contradiction, so Ac

λ is closed, so Aλ is open. This gives
measurability.

To prove the inequality, we use the inner regularity of µ and take an arbitrary compact subsetK ⊆ Aλ.
K has an open cover {Brx(x) : x ∈ Aλ}. Pass to a finite subcover B1, ..., BN of such balls. By Wiener’s
covering lemma (ES1), reduce to a subcollection osf disjoint balls B1, ..., Bk s.t.

|K| ≤ 3n
k∑

i=1

|Bi| =
3n

λ

k∑
i=1

λ|Bi| ≤
3n

λ

k∑
i=1

∫
Bi

|f(y)|dy ≤ 3n

λ
∥f∥L1

By inner regularity, |Aλ| ≤ sup{|K| : K ⊆ Aλ cpt} ≤ 3n

λ ∥f∥L1 .

Theorem 1.9. Let f ∈ L1(Rn), Br(x) ball centered at x with radius r. Then

lim
r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)|dy = 0, a.e. (†)

Remark 2. The set of points A = {x ∈ Rn : (†)} are called Lebesgue points of f .

⟨(⟩− : (Owen’s Signature)

Proof. Consider

Āλ =

{
x : lim

r→0
|Br(x)

−1|
∫
Br(x)

|f(y)− f(x)|dy > 2λ

}
Let ε > 0. Pick g ∈ Cc(Rn) s.t. ∥f − g∥L1 < ε. Then

1

|Br(x)|

∫
Br(x)

|f(y)−f(x)|dy ≤ 1

|Br(x)|

∫
Br(x)

|f(y)−g(y)|dy+ 1

|Br(x)|

∫
Br(x)

|g(y)−g(x)|dy+|f(x)−g(x)|

g is unif. cts, so the second term is small. If x ∈ Āλ, either the first term or the third term is > λ. The
third term is bounded using Markov’s inequality

{x : |f(x)− g(x)| > λ} ≤ ∥f − g∥L1

λ
< ε/λ

For the first term, use HL-maximal inequality,

|{x : first term > λ}| ≤ |{x :M(f − g)(x) > λ}| ≤ 3n

λ
∥f − g∥L1 ≤ 3nε/λ

Therefore |Āλ| ≤ Cε. So |Ac| ≤ |
⋃

n Ā1/n| ≤
∑

n |Ā1/n| = 0.

Remark 3. In particular, for f ∈ L1(R), limh→0

∫ x+h

x
f(y)dy = f(x) a.e.
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Theorem 1.10 (Egorov). Let E ∈ B(Rn), |E| < ∞. Suppose fj : E → R measurable s.t. fj → f a.e.
on E. Then

∀ε > 0, ∃Aε s.t. |E \Aε| < ε and fj
unif→ f on Aε

Proof. By discarding a null set, we may assume that fj → f pointwise on E. Define

Em
k = {x : ∀j > k, |fj(x)− f(x)| < 1/m}

Em
k is increasing as k → ∞, and

⋃
k E

m
k = E by pointwise convergence. Pick a subsequence km s.t.

|E \Em
km

| ≤ ε2−m. Define Aε =
⋂

mEm
km

. For all x ∈ Aε, |fj(x)− f(x)| < 1/m whenever j > km, so the
convergence is uniform on Aε, and

|E \Aε| ≤
∑
m

|E \ Em
km

| ≤ ε

Theorem 1.11 (Lusin). Let |E| <∞, f : E → R (or C) Borel-measurable. Then

∀ε > 0, ∃Fε s.t. |E \ Fε| < ε and f : Fε → R cts

Remark 4. Note that f is not necessarily continuous Fε when regarded as a map defined on E.

Proof. First prove it for simple functions f =
∑m

i=1 ai1Ai (wlog assumeAi disjoint), where
⋃
Ai = E. Use

inner regularity to find compact setsKk ⊆ Ak s.t. |Ak\Kk| < ε/m. f is cts on
⋃

kKk and |E\
⋃
Kk| ≤ ε.

For general f , approximate f ptwise by simple functions on E. Pick Aε s.t. |E \Aε| < ε/2 s.t. fm → f
unif. by Egorov. Take Cm compact s.t. |E \ Cm| < ε2−m−1. Then Take Fε = Aε ∩

⋂
m Cm. Can check

that |E \ Fε| ≤ ε.

Recall Riesz representation theorem in Hilbert spaces (bounded linear functionals can be written as
taking inner product with a certain element).

Consider two measures µ, ν on a measurable space (E, E).

Definition 1.12. We say that ν is absolutely continuous w.r.t µ if µ(A) = 0 =⇒ ν(A) = 0 for any
A ∈ E . We write ν ≪ µ. If ν ≪ µ and µ ≪ ν both hold, then we say that µ, ν are mutually absolutely
continuous.

If there exists B ∈ E s.t. 0 = µ(B) = ν(Bc), then we say that µ, ν are mutually singular, and we
write µ ⊥ ν.

Theorem 1.13 (Radon-Nikodym). Let µ, ν be finite measures on (E, E) s.t. ν ≪ µ. Then ∃w ∈ L1(µ),
w ≥ 0, s.t. for all A ∈ E, ν(A) =

∫
A
dν =

∫
A
wdµ.

Remark 5.

1) w is unique.

2) Will show that
∫
E
hdν =

∫
E
hwdµ for all h ≥ 0 measurable. In particular, w = dν/dµ (Leibniz

notation) is called the Radon-Nikodym derivative (or density) of ν w.r.t. µ.

3) The result extends to µ, ν σ-finite.

Proof (von Neumann). Define α = µ+2ν and β = 2µ+ ν. On L2(α), consider the map Λ(f) =
∫
E
fdβ.

This is bounded since

|Λ(f)| ≤
∫
E

|f |dβ ≤ 2

∫
E

|f |dα ≤ 2
√
α(E)∥f∥L2(α)

By Riesz, there exists g ∈ L2(α) s.t. Λ(f) =
∫
E
gfdα, i.e.,

∫
f(2dµ + dν) =

∫
gf(dµ + 2dν) for all

f ∈ L2(α). Rearrange, ∫
E

f(2− g)dµ =

∫
E

f(2g − 1)dν

Consider Aj = {x : g(x) ≤ 1
2 − 1

j }, j ∈ N. Thus, by taking f = 1Aj
,

3

2
µ(Aj) ≤

∫
E

f(2g − 1)dµ ≤ −2

j
ν(Aj)
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So, g ≥ 1/2 a.e. (w.r.t. both µ, ν). Similarly, by considering {x : g(x) ≥ 2 + 1/j}, can prove that g ≤ 2
µ-, ν- a.e. We extend to simple functions and then to non-negative measurable functions by MCT.

Consider f = 1{x:g(x)=1/2}, then get 3
2µ({x : g(x) = 1/2}) = 0, so ν({x : g(x) = 1/2}) = 0.

Let h ≥ 0 measurable and define f = h
2g−1 and w = 2−g

2g−1 (define it to be 0 if 2g − 1 = 0). Now∫
E

hdν =

∫
E

f(2g − 1)dν =

∫
E

f(2− g)dµ =

∫
E

hwdµ

Done by taking h = 1A. Note that w ∈ L1(µ) since
∫
E
wdµ =

∫
E
1Ewdµ = ν(E) <∞.

Remark 6.

1) If P is a prob measure on B s.t. P ≪ dx, where dx is the Lebesgue measure, then dP
dx = p(x) is the

Lebesuge prob density of P. Moreover, there exists a unique decomposition P = P≪ + P⊥. (ESheet)

2 Dual Spaces

Definition 2.1. Let X be a topological vector space. The top dual space is

X ′ = {Λ : X → R linear and cts}

If (X, ∥ · ∥) is a normed space, then cts⇔bounded, and X ′ has the operator norm. X ′′ = (X ′)′ is called
the bidual space.

We have a point evaluation map Λ 7→ Λ(x) for each x ∈ X. [Note that |Λ(x)| ≤ ∥Λ∥X′∥x∥X ≤
C∥λ∥X′ .] Can identify x 7→ (Λ 7→ Λ(x)) and regard X as a subspace of X ′′.

Definition 2.2. If X ′′ = X, then say X is reflexive.

For 1 < p < ∞, consider the Hölder conjugate q of p. Each g ∈ Lq defines a linear functional on
Lp by Λg(f) =

∫
fgdx. This is bounded since |Λg(f)| ≤ ∥g∥Lq∥f∥Lp . In fact ∥Λg∥ = ∥g∥Lq . Get an

embedding Lq ⊆ (Lp)′.

Theorem 2.3. For 1 ≤ p <∞, (Lp)′ = Lq. For 1 < p <∞, Lp is reflexive.

Remark 7. The result is false for p = ∞, so L1 is not reflexive.

Lemma 2.4. Under the hypothesis of the theorem, let U ∈ (Lp)′ positive, then ∃g ∈ Lq s.t. U(f) = Λg

and ∥U∥ = ∥g∥Lq .

Proof of lemma. On Rn consider the finite measure µ with density e−|x|2 . Further define, for each A ∈ B,
the set function

ν(A) = U(e−|x|2/p1A) ≥ 0

To show that ν is countably additive, consider Am ∈ B s.t. Am ↓
⋂

mAm = ∅ and note ν(Am) =

U(e−|x|2/p1Am
) ≤ ∥U∥∥∥e−|x|2/p1Am

∥Lp → 0 by DCT. Hence ν is a finite measure. Note that ν ≪ µ.

[If µ(A) = 0, then ν(A) ≤ ∥U∥∥∥e−|x|2/p∥Lp = ∥U∥µ(A)1/p = 0.] By Radon-Nikodym, ∃G ∈ L1(µ)
non-negative s.t. ν(A) =

∫
A
Gdµ. Consider a simple function F =

∑
k ak1Ak

. Compute

U(e−|x|2/pF ) =

∫ ∑
k

ak1Ak
Ge−|x|2dx =

∫
e−|x|2/p

∑
k

ak1Ak
Ge−|x|2/qdx

Set g = Ge−|x|2/q. Note that {e−|x|2/pF : F simple} is dense in Lp ∩ {≥ 0}. Since fg ∈ L1 [Note∫
|fg| =

∫
|f |g = U(|f |) ≤ ∥U∥∥f∥Lp < ∞]. Decomposing fg into f+g − f−g and taking limits, we see

that U(f) =
∫
fg for all f ∈ Lp.

(cf. ES1), have ∥g∥Lq = sup{
∫
|fg| : ∥f∥Lp ≤ 1} = U(|f |) ≤ ∥U∥ <∞ and ∥U∥ = sup∥f∥Lp≤1 |

∫
fg| ≤

∥g∥Lq by Hölder, so ∥U∥ = ∥g∥Lq .

Proof of thm. Note (ES) that Λ ∈ (Lp)′ can be uniquely decomposed as Λ+−Λ−, where Λ± are positive
linear functionals (Λ±(h) ≥ 0 for all h ≥ 0 a.e.). Apply the preceding lemma.

We can characterize duals of subspace of L∞, e.g., any finite measure defines a linear functional in
Cc(Rn)′ by f 7→ µ(f).

5



Definition 2.5. A measure is regular on Rn if ∀ε > 0,∀A ∈ B,∃C closed, D open s.t. C ⊆ A ⊆ D s.t.
µ(D \ C) < ε

Theorem 2.6 (Riesz). Let Λ ∈ (Cc(Rn))′ be positive. Then ∃ a σ-algebra M ⊇ B and a regular measure
µ on M s.t. Λ(f) =

∫
Rn fdµ.

Proof omitted.
(B (Owen’s Signature)

3 Weak and Weak∗ Topology

Definition 3.1. A semi-norm p on a vector space X is a functional p : X → [0,∞) s.t.

1) ∀x, y ∈ X, p(x+ y) ≤ p(x) + p(y);

2) ∀x ∈ X,∀λ ∈ R (or C), p(λx) = |λ|p(x)

The collection P of seminorms introduces a ‘locally convex’ topology τP generated by

Vx(p, n) = {y ∈ X : p(y − x) < 1/n}

for x ∈ X, p ∈ P, n ∈ N.

Definition 3.2. The family P is said to separate points if for any 0 ̸= x ∈ X, there exists p ∈ P s.t.
p(x) ̸= 0.

Therefore (ES) a sequence xn converges in τP iff for all p ∈ P, p(xn − x) → 0 as n → ∞. This
topology is not generally metrizable unless P is countable. In that case a metric is given by

dP(x, y) =

∞∑
i=1

pi(x− y)

2−i(1 + pi(x− y))

Definition 3.3. We say that (X, τP) is a locally convex topological vector space (LCTVS). If it’s
complete, then we call it a Frechet space.

Consider the semi-norms given by pΛ(x) = |Λ(x)|.

Definition 3.4. The topology τP induced by P = {pΛ : Λ ∈ X ′} is called the weak topology τw. We
say that xn → x weakly in X or xn ⇀ x if Λ(xn) → Λ(x) for all Λ ∈ X ′.

Definition 3.5. On the dual space X ′, we can consider the weak-∗ topology τw∗ induced by P =
{px(Λ) = |Λ(x)| : x ∈ X}. Note that Λn → Λ weak-∗, or Λn ⇀

∗ Λ if Λn(x) → Λ(x) for all x ∈ X.

Example 3.6.

1) Consider Lp(R, dx). fn → f weakly in Lp iff

∀g ∈ Lq,

∫
Rn

fngdx→
∫
Rn

fgdx (†)

Since Lp = (Lq)′, Λfn → Λf weak-∗ (or fn → f weak-∗) iff (†) holds. For 1 < p < ∞, weak
convergence and weak-∗ convergence coincide. (This is true in any reflexive space.)

2) Consider a probmeas on a metric space D (with Borel σ-algebra). Let Cb(D) denote the Banach
space of bounded cts functions on D. Then µ(f) defines an element Cb(D)′. A sequence of probmeas
µn converges to µ in τw∗ if µn(f) → µ(f) for all f ∈ Cb(D). (i.e. weak convergence of laws)

Recall Arzela-Ascoli. A sufficient condition for equicontinuity is given by Hölder continuity, defined
as

∥f∥C0,γ = ∥f∥∞ + sup
x ̸=y

|f(x)− f(y)|
|x− y|γ

where 0 < γ < 1 and

∥f∥Cm,γ =
∑

0≤|α|≤m

∥Dαf∥∞ + max
|α|=m

sup
x ̸=y

|Dαf(x)−Dαf(y)|
|x− y|γ

So {f : ∥f∥C0,γ ≤ 1} is compact in C([0, 1]) by Arzela-Ascoli.
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Theorem 3.7 (Banach-Alaoglu). Let X be a normed space. The unit ball B1 = {Λ ∈ X ′ : ∥Λ∥X′ ≤ 1}
of X ′ is compact in weak-∗ topology

Remark 8. In (Cb(D))′ any sequence of probmeas has a weak-∗ convergent subsequence.

We will prove Banach Alaoglu for X separable.

T̈ (Owen’s Signature)

Lemma 3.8. For a countable dense subset D = {x1, ..., xn} of X, consider seminorms P̃ = {pxk
(Λ) =

|Λ(xk)| : k ∈ N} with induced topology τP̃ . Then τw∗ = τP̃ coincide as topologies on B′
1 = {Λ ∈ X ′ :

∥Λ∥X′ ≤ 1} and are metrized by

dP̃(Λ,Λ′) =

∞∑
k=1

|Λ(xk)− Λ′(xk)|
2k(1 + |Λ(xk) + Λ′(xk)|)

Proof. The open sets for τP̃ are generated by V (xk,m) = {Λ : |Λ(xk)| < 1/m}. To prove that the two
topologies are equivalent, it suffices to show that V (x, n) contain some V (xk,m) for all x ∈ X,n ∈ N.
Suppose x ∈ X \ D and pick xk ∈ D s.t. ∥x − xk∥ < ε. For Λ ∈ V (xk,m) we have |Λ(x)| ≤
|Λ(xk − x)| + |Λ(xk)| ≤ ∥Λ∥X′ε + 1/m < n when ε is sufficiently small and m sufficiently large, so
V (xk,m) ⊆ V (x, n).

If Λj(xk)
j→∞−→ Λ(xk) for all k then dP̃(Λj ,Λ) → 0 by DCT applied to counting measure on N.

Theorem 3.9. Let Λj ∈ B′
1. Then ∃Λ ∈ B′

1 s.t. Λjk → Λ weak-∗.

Proof. Let D be a countable dense subset of X. Since |Λj(xk)| ≤ ∥xk∥ <∞. Diagonalization argument.
Find convergent subsequences Λi,j Find a Λ as the limit of Λj,j . Need to show linearity and continuity.
Note that Λ is unif cts on D. [If x, y ∈ D with ∥x − y∥ < ε/2, then for all j sufficiently large,
|Λj,j(x) − Λ(x)|, |Λ(y) − Λj,j(y)| < ε/4] Apply triangle inequality to |Λ(x) − Λ(y)|. Note that Λj,j is
uniformly Lipschitz. By uniform continuity, we can extend Λ to a unif cts function on X.

To show linearity, let x, y ∈ X, z = x + ay for a ∈ R (or C) and pick x′, y′, z′ ∈ D s.t. ∥x − x′∥ +
|a|∥y − y; ∥+ ∥z − z′∥ < δ.

Apply a big triangle inequality.

|Λ(z)− Λ(x)− aΛ(y)| ≤ |Λ(z)− Λ(z′)|+ |Λ(x)− Λ(x′)|+ |a||Λ(y)− Λ(y′)|
≤ +|Λ(z′)− Λj,j(z

′)|+ ..................................|

each term is small either by unif continuity or unif convergence or linearity of Λ on D.
Need to show that ∥Λ∥ ≤ 1 (|Λ(x)| ≤ |Λ(x−x′)|+ |Λ(x′)|) and that the convergence holds on X.

4 The Hahn-Banach theorem and its consequences

Definition 4.1. A functional p : X → R on a real vector space is called sub-linear if

(i) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

(ii) p(tx) = tp(x) for all t ≥ 0, x ∈ X.

Lemma 4.2 (Bounded extension). Let X be a real vector space and p : X → R sub-linear Let M ⊊ X
be a vector subspace, and for x ∈ X \M define M̃ = span(M,x) = {M + cx : c ∈ R}. If l :M → R is a
linear form s.t. l(x) ≤ p(x) for all x ∈M , then there exists l̃ : M̃ → R linear s.t. l̃M = l and l̃(x) ≤ p(x)
for all x ∈ M̃ .

Proof. Let y1, y2 ∈M . l(y1) + l(y2) = l(y1 + y2) ≤ p(y1 + y2) ≤ p(y1 − x) + p(y2 + x) for all x ∈ X \M .
Rearrange, l(y1)− p(y1 − x) ≤ l(y2)− p(y2 + x). Take sup/inf,

sup{l(y)− p(y − x) : y ∈M} ≤ a ≤ inf{p(y + x)− l(y) : y ∈M} (∗)

for some a ∈ R. If z ∈ M̃ , then it has a unique decomposition z = y + λx for some λ ∈ R. Define

l̃(z) = l̃(y+λx) = l(y)+λa. To see l̃ ≤ p on M̃ , for λ > 0, write l̃(y+λx) = λ(l(y/λ)+a)
(∗)
≤ λ(l( yλ )+p(

y
λ+

x)− l( yλ )) = p(y+λx). For λ < 0, let µ = −λ and l̃(y+λx) = µ(l( yµ −a)) ≤ µ(l( yµ )− l(
y
µ )+p(

y
µ −x)).
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To extend l to all of X (for X separable), we can apply the extension lemma inductively to Mn =
span(M ;x1, ..., xn), where (xn)n∈N is a countable dense subset of X.

In general, consider S = {(N, l̃) :M ⊆ N ⊆ X vec.sp. , l̃|M = l, l̃ ≤ p on N}. Apply Zorn’s lemma.

Theorem 4.3 (Hahn-Banach). Let X be a real vector space and p : X → R a sublinear functional. For
M ⊆ X vec. subspace, let l : M → R be a linear functional s.t. l(x) ≤ p(x) for all x ∈ M . Then there
exists an extension l̃ : X → R (linear) s.t. l̃(x) ≤ p(x) for all x ∈ X.

Remark 9. Extensions need not be unique. If X is non-separable, the result depends on Axiom of Choice.

Corollary 4.4 (Norming Functional). Let X be a normed linear space. For all x ∈ X, there exists a
linear functional Λ = Λx ∈ X ′ s.t. ∥Λ∥ = 1 and |Λ(x)| = ∥x∥X . In particular, if Λ(x − y) = 0 for all
Λ ∈ X ′, then x = y.

⊂]− : ⟨ (Owen’s (infinitely handsome) signature)

Proof. For x ∈ X define the vector subspaceM = {cx : c ∈ R} and consider the linear functional l(cx) =
c∥x∥X , so |l(y)| ≤ p(y) = ∥y∥X . By Hahn-Banach, there exists Λ = Λx : X → R s.t. |Λx(y)| ≤ ∥y∥X , so
Λ ∈ X ′ and ∥Λ∥ ≤ 1. Note that ∥Λ∥X′ ≥ supy∈M∩BX

|l(y)| ≥ ∥x∥X

Corollary 4.5. The canonical injection of i : X ↪→ X ′′ given by x 7→ (Λ → Λ(x)) is an isometric
embedding.

Proof. Consider ∥i(x)∥X′′ = sup∥Λ∥≤1 |Λ(x)| ≤ ∥x∥X . By taking a norming functional, ∥i(x)∥X′′ ≥
∥Λx(x)∥ = ∥x∥.

If X is reflexive, then X is isometrically isomorphic to (X ′)′ which is complete. (i.e., reflexive normed
lienar space is Banach.) If X is not reflexive, then X ′′ provides (up to iso) the completion of X for ∥ ·∥X .

In particular, if X is reflexive ,then the weak topology coincides with the weak-∗ topology on (X ′)′,
so Banach-Alaoglu the unit ball BX is compact in τw.

Theorem 4.6 (Hyperplane Separation). Let A,B be non-empty disjoint convex sets in a Banach space
X over R.

(i) If A is open, then ∃Λ ∈ X ′ and γ ∈ R s.t. Λ(a) < γ ≤ Λ(b) for all a ∈ A and b ∈ B.

(ii) If A is compact and B is closed, then ∃Λ ∈ X ′ and γ1, γ2 ∈ R s.t. Λ(a) < γ1 < γ2 < Λ(b) for all
a ∈ A, b ∈ B.

Proof. (i): Pick a0 ∈ A, b0 ∈ B and let x0 = b0 − a0. Define C = A − B + x0. C is convex, 0 ∈ C,
x0 /∈ C. C is open. Consider the Minkowski functional defined as

pC(x) = inf{t > 0 : x/t ∈ C}

Can show (ES) that pC is

• sublinear on X

• there exists k > 0 s.t. pC(x) ≤ k∥x∥

• pC(x) < 1 for x ∈ C and pC(x) ≥ 1 for x /∈ C.

Take
M = {tx0 : t ∈ R}

and consider the linear functional l :M → R, tx0 = t. Then l is dominated by pC since

l(tx0) = t ≤ tpC(x0) = p(tx0) = pC(tx0)

for t > 0 and l(tx0) = t ≤ 0 ≤ pC(tx0). By Hahn-Banach, there exists Λ : X → R s.t. −k∥x∥ ≤
−pC(x) ≤ Λ(x) ≤ pC(x) ≤ k∥x∥ for all x ∈ X, so Λ ∈ X ′. Pick a ∈ A, b ∈ B. Note that

Λ(a)− Λ(b) + Λ(x0) = Λ(a− b+ x0) ≤ pC(a− b+ x0) < 1

So Λ(a) < supΛ(A) ≤ Λ(b).
(2): Λ(A) is compact in R and d = ∥A − B∥X . Then consider Ãd = A + Bd/2, where Bd/2 = {y :

∥y∥ < d/2 still disjoint from B. Apply (1).

??? (Owen’s missing Signature)
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5 Generalized Functions and Distributions

Consider a topological vec. space X ⊆
⋂

q≥1 L
q(Ω, dx), where Ω is an open subset of Rn. Suppose X

contains C∞
c (Ω). Let f ∈ Lq, then obtain a linear functional on X given by Λf (g) =

∫
Ω
fgdx, g ∈ X. If

the embedding X ↪→ Lq is cts, then Λf ∈ X ′. Note that g = ϕϵ is contained in X, mollification implies
Λf = 0 =⇒ f = 0 a.e.. So we can identify Λf with f and study the weak-∗ topology of X ′ on Lp.

Define seminorms on C∞(Ω), pN (ϕ) = max0≤|α|≤n supx∈KN
|Dαϕ(x)|, where Ki ⊆ Ki+1 and

⋃
iKi =

Ω. We define the Frechet space E(Ω) = (C∞(Ω), τP), where P = {pN : N ∈ N}. [Note that E(Ω) may
contain non-integrable functions.]

Theorem 5.1. There exists a topology τ on C∞
c (Ω) s.t.

(1) vector space operations are cts

(2) a sequence ϕj
j→∞→ 0 iff ∃K ⊆ Ω compact s.t. supp(ϕj) ⊆ K for all j and Dαϕj → 0 unif. on K for

all 0 ≤ |α| <∞.

(3) If T : C∞
c (Ω) → R (or C) is linear, then it’s cts iff T (ϕj) → 0 for all ϕj → 0 in τ .

proof omitted.

Definition 5.2. We define D = D(Ω) = (C∞
c (Ω), τ), the space of test functions.

For each ϕ ∈ C∞
c (Ω), define e−jϕ(·/j), then e−jϕ(·/j) → 0 in D, but j−2025ϕ(·/j) does not converge

to 0 in D.

Definition 5.3. Call ϕ ∈ C∞(Rn) rapidly decreasing if supx∈Rn(1 + |x|)N |Dαϕ(x)| < ∞ for all 0 ≤
|α| <∞ and all N ∈ N.

[Note that e−|x|2 is rapidly decreasing but (1 + |x|)−2025 is not.]
Define seminorms P̃ = {p̃N : N ∈ N} with

p̃N = max
0≤|α|≤N

sup
x∈Rn

(1 + |x|)N |Dαϕ(x)|

Define Frechet space S(Rn) = ({ϕ rapidly decreasing}, τP̃). This is metrizable since P̃ is countable. This
is called the Schwartz class.

Clearly D(Ω) ⊊ E(Ω), D(Rn) ⊊ S(Rn) ⊊ E(Rn) with continuous embedding (ES). We can now define
D′(Ω) = {T : D(Ω) → R (or C) linear and cts}, the space of Schwartz distributions. We also define
E(Ω) = {T : E(Ω) → R (or C) linear and cts} the space of compactly supported Schwartz distributions.
Finally for Ω = Rn we define S(Rn) = {T : S(Rn) → R (or C) linear and cts} the space of tempered
distributions. These spaces are equipped with their weak-∗ topologies of pointwise convergence on D, E ,S
resp. Have cts embeddings E ′ ⊂ D′, and E(Rn) ⊂ S(Rn) ⊂ D′(Rn).

Example 5.4. Consider δx(ϕ) = ϕ(x), then if ϕj → 0 in D, E ,S , then δx(ϕj) = ϕj(x) → 0 as j → ∞,
so δx ∈ E ′,D′,S ′.

O ⌢ O (Owen’s Signature)

Let f ∈ L1
loc(Ω). Then Tf (ϕ) =

∫
Ω
fϕdx, ϕ ∈ D(Ω). Have Tf ∈ D′(Ω) since for ϕj → 0 in D(Ω) we

have Tfϕj → 0 by DCT with dominating function supj∈N ∥ϕj∥∞1K |f | ∈ L1 (K compact). Also, Tf = 0
in D′(Ω) still implies f = 0 a.e. by applying the mollification theorem (ES) to f1B(x) where B(x) is a
ball in Ω containing x ∈ Ω, so L1

loc ⊆ D′

If φε = ε−nφ(·/ε), φ ≥ 0, smooth, compactly supported, normalized, then for g ∈ D(Rn), Tφε
(g) =

g ∗ φε(0) → g(0) = δ0(g) as ε→ 0. So Tφε

ε→0→ δ0 in D′(Rn).

5.1 Generalized (Distributional) Derivatives in D′(Ω))

Let f ∈ C1(Ω), then Dif ∈ L1
loc. Consider TDif . Let φ ∈ D(Ω)∫

(Dif)φdx
ibp
= −

∫
fDiφdx = −Tf (Diφ)
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So we define (for all multi-index α) the generalized derivative of any T ∈ D′(Ω) as

(DαT )(φ) = (−1)|α|T (Dαφ)

so DαT ∈ D′(Ω). If T = Tf and DαT = Tg for some f, g ∈ L1
loc, then say g = Dα

wf the weak partial
derivative of f .

Example 5.5. Let f(x) = x1{x>0}. Consider Tf .

DTf (φ) = −Tf (φ′) = −
∫ ∞

0

xφ′(x)dx
ibp
=

∫ ∞

0

φ(x)dx =

∫
R
Hφdx

where H is the Heaviside function, so H is the weak derivative of f .
Consider the second derivative.

D2Tf (φ) = DTH(φ) = −TH(φ′) = −
∫ ∞

0

φ′ = φ(0) = δ0(φ)

δ0 cannot be represented by locally integrable functions.
Have D3Tf (φ) = −δ0(φ′) = −φ′(0) which is a Schwartz distribution but not a measure.

5.2 Multiplication of Distributions with Smooth Functions

If f ∈ L1
loc and a ∈ C∞(Ω), the Taf (φ) =

∫
Ω
afφ = Tf (aφ). Note that aφ ∈ D if φ ∈ D, so we define

(aT )(φ) = T (aφ)

for T ∈ D′(Ω) and a ∈ C∞(Ω).

5.3 Compactly Supported Distributions

Proposition 5.6. A linear map T : E(Ω) → R (or C) is cts iff there exists K ⊆ Ω compact, N ∈ N,
and C > 0 s.t. for all φ ∈ E(Ω)

|T (φ)| ≤ C max
0≤|α|≤N

sup
x∈K

|Dαφ(x)| (†)

Proof. Suppose (†) holds and ϕj → 0 in E(Ω). By defn of τP , for j large enough, K ⊆ Kj and RHS of
(†) with ϕ = ϕj converges to 0, so T (ϕj) → 0, so T ∈ E ′(Ω).

Conversely, assume T is cts but (†) fails. If Kj ⊆ Kj+1 is any exhaustion of compact sets of Ω, we
obtain a sequence φj ∈ E ′(Ω) s.t.

|T (φj)| ≥ j max
0≤|α|≤j

sup
x∈Kj

|Dα(φj)|

Define ψj =
φj

|T (φj)| . Have

|Dβψj(x)| ≤
1

j

|Dβφj(x)|
max0≤|α|≤j supx∈Kj

|Dαφj(x)|
e.v.
≤ 1

j
→ 0

So ψj → 0 in E(Ω) but T (ψj) = 1 for all j. Contradiction.

Definition 5.7. Say T ∈ D′(Ω) has support in a closed setK ⊆ Ω if T (φ) = 0 whenever φ ∈ C∞
c (Ω\K) ⊆

C∞
c (Ω).

The last proposition implies that T ∈ E ′(Ω) is supported in some compact subset of Ω. If f ∈ L1
loc s.t.

f = 0 outside of a compact set, then Tf is compactly supported. If T ∈ D′(Ω) is compactly supported,
then so is DαT for any α.

Proposition 5.8. Any T ∈ E ′(Ω) restricts to T ∈ D′(Ω) of compact support. Any T ∈ D′(Ω) that is
compactly supported extends to T̃ ∈ E ′(Ω).

Proof. The first claim follows from (†) in the preceding proposition. Conversely, if K is compact and
supports T1. Take ξ ∈ C∞

c (Ω) s.t. ξ = 1 on K and define T̃ (φ) = T (ξφ), φ ∈ E(Ω), which define an
element of E ′(Ω).
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5.4 Convolutions of Distributions

Notation: Recall the shift operator τxg = g(· − x). Let
∨
g = g(−·), and ∨

τxg = g(x− ·).
In this notation f ∗g(x) = Tf (

∨
τxg). If g ∈ C∞

c (Rn),
∨
τxg ∈ C∞

c (Rn), and we can define for T ∈ D′(Rn),
φ ∈ D(Rn), the convolution

x 7→ T ∗ φ(x) = T [
∨
τxφ]

Theorem 5.9. Let T ∈ D′(Rn), φ ∈ D(Rn), α any multi-index. Then T ∗φ ∈ C∞(Rn) and Dα(T ∗φ) =
(DαT ) ∗ φ = T ∗ (Dαφ).

Proof. Take ei ∈ Rn (basis vector), and let h→ 0. Write

1

h
[T ∗ φ(x+ hei)− T ∗ φ(x)] = T

[
φ(x+ hei − ·)− φ(x− ·)

h

]
ES2−→ Di(φ(x− ·))

in D(Rn) and since T is cts in this topology, RHS
h→0→ T [Diφ(x−·)] = T (

∨
τxDiφ) = T ∗Diφ. In particular

T ∗ φ is cts for any φ ∈ D(Rn) and is T ∗ Diφ, and by iterating we deduce that T ∗ φ ∈ C∞(Rn). In
particular, Dα(T ∗ φ) = T ∗ (Dαφ).

Need to prove the first equality. Note

Dα(
∨
τxφ) = Dαφ(x− ·) = (−1)|α|(Dαφ)(x− ·) = (−1)|α|

∨
τxD

αφ

Thus (Dα) ∗ φ(x) = DαT (
∨
τxφ) = (−1)|α|T (Dα(

∨
τxφ)) = τ(

∨
τxD

αφ) = T ∗ (Dαφ).

Notice if T ∈ E ′(Ω), supported in K cpt and Kx the shifted support of
∨
τxφ = φ(x− ·), φ ∈ C∞

c (Rn).
Thus for |x| large enough, K ∩Kx = ∅ and T∗φ ∈ D(Rn).

Definition 5.10. Let T )1 ∈ D′(Rn), T2 ∈ E ′(Rn). THen define their convolution by the action

(T1 ∗ T2) ∗ φ(x) = T1 ∗ (T2 ∗ φ)(x)

for φ ∈ D(Rn).

Remark 10. Note that T1 ∗ T2 is assigned on D(Rn) as we can consider x = 0, φ = ϕ(−·) so that
T1 ∗ T2(φ)(0) = T1 ∗ T2(ϕ) for ϕ ∈ D(Rn).

Remark 11. Note that δ0 has cpt support and δ0∗φ = δ0[φ(x−·)] = φ(x). Therefore for any T1 ∈ D′(Rn),
(T1 ∗ δ0) ∗ φ = T1 ∗ (δ0 ∗ φ) = T1 ∗ φ, so δ0 ∗ [·] acts as a right identity on all of D′(Rn).

Theorem 5.11. Let T1 ∈ D′(Rn), T2 ∈ E ′(Rn), α any multi-index. Then

Dα(T1 ∗ T2) = (DαT1) ∗ T2 = T1 ∗ (DαT2)

Proof. Using the previous theorem and the definitions, for any φ ∈ D(Rn), we have Dα(T1 ∗ T2)
thm
=

(T1 ∗ T2) ∗Dαφ
def
= T1 ∗ (T2 ∗Dαφ)

thm
= T1 ∗ (DαT2 ∗ φ)

def
= (T1 ∗DαT2) ∗ φ.

5.5 Fundamental Solutions of Linear PDEs

Consider a partial differential operator L =
∑

|α|≤k aαD
α, aα ∈ C∞(Rn), k ∈ N. Consider Lu = u0 for

u, u0 ∈ D′(Rn). A weak solution u is one s.t. (Lu)(φ) = u0(φ) for all φ ∈ D. An element G ∈ D′(Rn) is
called a fundamental solution for L if LG = δ0 in D′(Rn). If G = Tg for some g ∈ L1

loc(Rn), then we call
g the Green kernel of G.
Theorem 5.12. Suppose L has constant coefficients aα ∈ R (or C), and G ∈ D′(Rn) is its fundamental
solution. Then, if u0 ∈ E ′(Rn), a solution Lu = u0 is given by

u = G ∗ u0
Remark 12. If u0 ∈ D, then G ∗ u0 ∈ C∞(Rn) and the equation Lu = u0 holds pointwise on Rn.

Proof. By linearity and the previous theorem

Lu =
∑
|α|≤k

aαD
α(G ∗ u0) =

∑
|α|≤k

aα(D
αG ∗ u0) = LG ∗ u0 = δ0 ∗ u0 = u0

Note that the last equality follows from the fact that we can swap δ0 and u0 when u0 is compactly
supported.
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5.6 Fourier Transforms of Distributions

Recall Fourier transform

f̂(u) =

∫
Rn

e−ix·uf(x)dx

for f ∈ L1. Since f̂ ∈ L1
loc(Rn), we can consider the operator

Tf̂ (φ) =

∫
Rn

f̂(u)φ(u)du =

∫
Rn

∫
Rn

f(x)e−ix·uφ(u)dudx = Tf (φ̂)

for φ ∈ D. Note that we used Fubini. Since φ̂ is not necessarily in D, this defn doesn’t extend to D′,
and we choose to work with S(Rn) and S ′(Rn) instead.

Recall Riemann Lebesgue lemma from PM.

Lemma 5.13. Let f ∈ L1(Rn), then f̂ ∈ C0(Rn).

Proof. For any uj → u in Rn, we have e−ix·ujf(x) → e−ix·uf(x), and this gives a dominating function.

By DCT, f̂(uj) → f̂(u), so f̂ is cts. Also have ∥f̂∥∞ ≤
∫
Rn |f(x)|dx = ∥f∥L1 . For any f ∈ L1, take a

sequence fk ∈ C∞
c (Rn) s.t. fn → f in L1, so that ∥f̂k − f̂∥∞ ≤ ∥fk − f∥L1 → 0 so f̂k → f̂ unif. on

Rn, and f̂k ∈ C0(Rn). Now have |uj |f̂l(u)| = | ˆDjfk(u)| ≤ ∥Djf∥L1 < ∞. By completeness of C0(Rn),

f̂ ∈ C0(Rn)

Remark 13. Note that Fourier transform does not map L1 onto C0(Rn).

H; (Owen’s signature)

Lemma 5.14. Let f ∈ L1(Rn).

(i) If fλ = λ−nf(·/λ), λ > 0, then f̂λ = f̂(λu), u ∈ Rn

(ii) F [τxf ](u) = e−ix·uf̂(u), F [ei⟨y,·⟩f ] = τy f̂ .

(iii) If g ∈ L1, then f ∗ g ∈ L1 and F [f ∗ g] = f̂ · ĝ

Proof. Fubini and substitution.

Theorem 5.15.

(i) Let f ∈ C1(Rn), f,Djf ∈ L1 for j = 1, ..., n. Then F [Djf ](u) = iuj f̂(u) for u ∈ Rn.

(ii) If f ∈ L1(Rn) and
∫
Rn(1 + |x|)|f(x)|dx < ∞, then for any j = 1, ..., n, u ∈ Rn, have Dj f̂(u) =

−iF [xj f̂(x)]. In particular, f̂ ∈ C1(Rn)

Proof. (i) For any ε > 0, we can pick fε ∈ C∞
c (Rn) s.t. ∥fε − f∥L1 + ∥Djfε − Djf∥L1 < ε. [First

approximate by f̄ = fξ, with ξ ∈ C∞
c (Rn) s.t. ξ = 1 on D(0,M). Approximate f̄ by ϕε ∗ f̄ → f̄ in L1.

Also have Dj(ϕε ∗ f) = ϕε ∗ (Dj f̄) → Dj f̄ as ε→ 0.] For such fε we see

F [Djfε](u) =

∫
Rn

eix·uDjfε(x)dx
ibp
= −

∫
Rn

iujx
−ix·ufε(x)dx

So

|F [Djf ](u)− iuj f̂(u)| ≤ |F [Dj f̂ ](u)−F [Djfε](u)|+ |iuj(f̂ε(u)− f(u))|
≤ ∥Djf −Djfε∥+ |uj |∥fε − f∥L1

≤ (1 + |uj |)ε

(ii)

1

h
(f̂(u+ hej)− f̂(u)) =

∫
Rn

1

h
(e−ix·(u+hej) − e−ix·u)f(x)dx

=

∫
Rn

e−ix·u(
e−ix·(hej) − 1

h
)f(x)dx

DCT→ −i
∫
Rn

e−ix·uxjf(x)dx

Dominating function |xj |, which is |f(x)|dx-integrable by assumption.
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Recall from PM.

Theorem 5.16 (Fourier Inversion). Let f ∈ L1 and f̂ ∈ L1 Then f(x) = 1
(2π)n

∫
Rn e

ix·uf̂(u)dx =

F−1[f̂ ](x) a.e.

Note that for the unique cts representative of f , the formula holds everywhere.

Note that F−1[Fφ] = 1
(2π)nF [Fφ](−·), so F−1 is a Fourier transform, and F2φ = (2π)n

∨
φ.

Theorem 5.17. F is a linear automorphism of S(Rn).

Proof. Can check S(Rn) ⊆ L1(Rn). If f ∈ L1, then
∫
|f | ≤ (supx∈Rn(1 + |x|)n+1|f(x))

∫
Rn

dx
(1+|x|)n+1 <

∞. For multi-indices α, β,

|uα||Dβ f̂(u)| = |F [Dα(xβf)]|(u)
RL
≤ ∥Dα(xβf)∥L1 ≤ pN (f)

where pN (f) is an expression of the form in the previous ineq. If ϕj → 0 in S, have pN (ϕ̂j) → 0 and
F : S → S is cts. Moreover, if F [ϕ] = 0 for ϕ ∈ S ⊆ L1, then by the Fourier inversion formula,

ϕ = F−1(0) = 0, so F is injective. For any ϕ ∈ S(Rn), have F−1Fϕ = 1
(2π)nF

2
∨
ϕ, which is the fourier

transform of some function, so also surjective.

Definition 5.18. For T ∈ S ′(Rn) we define its distributional Fourier transform T̂ (ϕ) = T (ϕ̂) for all
ϕ ∈ S(Rn)

Remark 14. Clearly by the previous theorem, T̂ ∈ S ′(Rn). If f ∈ L1, then Tf̂ (ϕ) =
∫
Rn f̂ϕdx

Fubini
=∫

Rn fϕ̂ = Tf (ϕ̂).

(: H (Owen’s Signature with Quiff)

Definition 5.19. Call ϕ slowly increasing if supx∈Rn(1 + |x|)−N |ϕ(x)| <∞ for some N .

Then Tϕ ∈ S ′(Rn). Even if T̂ϕ is given by Tg for some g ∈ L1
loc, can’t conclude ϕ̂ is pointwise defined.

If Tj , T ∈ S ′(Rn) and Tj → T weak-* in S ′(Rn), then T̂j(ϕ) = Tj(ϕ̂) → T (ϕ̂) = T̂ (ϕ), so F : S ′(Rn) →
S ′(Rn) is sequentially continuous. One shows further that T̂ = 0 =⇒ T = 0, so F is inj. Define F−1T

via F−1T (ϕ) = T (F−1ϕ) for all ϕ in S(Rn). F−1 = 1
(2π)n

∨
F . Can check F−1[FT ](ϕ) = T (ϕ).

Theorem 5.20. F (Fourier transform) defines a linear automorphism of S ′(Rn).

Remark 15. Recall Plancherel from PM. F extends to the completion by unif continuity. Get an isometry
1

(2π)n/2 F̄ of L2 = L1 ∩ L2
L2

. If we define F̄T (ϕ) = T (F̄ϕ) = T (ϕ̂) for all ϕ ∈ S ⊆ L1 ∩L2, then see that

F̄ = F on S1.
For any finite measure µ on Rn, have µ̂(u) =

∫
Rn e

−ix·udµ(x). Then

T̂µ(ϕ) = Tµ(ϕ̂) =

∫
Rn

∫
Rn

e−ix·uϕ(u)dudµ(x) = Tµ̂(ϕ)

FTµ = Tµ̂ in S ′(Rn).

For T ∈ E ′(Rn), can define E(u) = T (e−i⟨·,u⟩). Can show that T̂ = TE in S ′(Rn) with E slowly
increasing.

Note that the product of a slowly increasing func with a rapidly decreasing func is again rapidly
decreasing, i.e., in S. For T ∈ S ′, define aT for a ∈ C∞ slowly increasing by (aT )(ϕ) = T (aϕ) for ϕ ∈ S.
For any T ∈ D′(Rn), define (τkT )(φ) = T (τ−kϕ) for k ∈ Rn.

Lemma 5.21. Let T ∈ S ′(Rn) and α any multi-index

(i) F(τyT ) = e−i⟨y,·⟩T̂ and F [e−i⟨y,·⟩T ] = τyT

(ii) F [DαT ] = i|α|uαT̂ and DαT̂ = (−i)|α|F [xαT ]

Proof. Compute.

Remark 16. F [Dαδ0] = i|α|uα. So the FT of partial derivatives of Dirac measure span the space of polys.

Owen is ill today
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5.7 Periodic Distribution

Definition 5.22. T ∈ D′(Rn) is periodic if τkT = T for all k ∈ Zn

Definition 5.23. For T ∈ E ′(Rn), define the periodization Tper =
∑

k∈Zn τkT .

The fundamental cell of the lattice is Q = [−1/2, 1/2)n. The indicator 1Q is not smooth.

Lemma 5.24. There exists ψ ∈ C∞
c (Rn) s.t.

(i) ψ ≥ 0

(ii) suppψ ⊆ Int(Q) where Q = [−1, 1]n.

(iii)
∑

k∈Zn ψ(x− k) = 1 for all x ∈ Rn

If ψ′ is another such function and T is a periodic distribution, then T (ψ) = T (ψ′).

Call this ψ a periodic partition of unity (ppu).

Proof. Find ψ0 ∈ C∞
0 supported in Int(Q) s.t. ψ0 = 1 on Q. Define S(x) =

∑
k∈Zn ψ0(x−k). Normalize

ψ(x) = ψ0(x)/S(x).
If T is a periodic distribution, then

T (ψ) = T (
∑
g∈Zn

τgψ
′ψ) =

∑
g

τgT (ψτgψ
′) =

∑
g

T (ψ′τgψ) = T (ψ′)

Can take ψ0,j → 1Q ptwise and supj ∥ψ0,j∥∞ < ∞. Obtain a uniformly bounded sequence of ppu
ψj → 1Q.

Definition 5.25. For T ∈ D′(Rn) periodic, define the mean of T as M(T ) = T (ψ) where ψ is any ppu.

Theorem 5.26. Let E ′(Rn). Tper converges in S ′(Rn). If T ∈ D′(Rn) is periodic, then there exists
V ∈ E ′(Rn) s.t. T =

∑
g∈Zn τgV in D′(Rn).

Proof. For T ∈ E ′, have a cpt set K ⊆ BR (ball of radius R) and N,C > 0 s.t. for all ϕ ∈ E

|T (ϕ)| ≤ C sup
x∈K,|α|≤N

|Dαϕ(x)|

Have 1 + |g| ≤ 1 + |g + x|+ |x| ≤ 1 + |g + x|+R ≤ (1 +R)(1 + |g + x|), so

1 ≤ (1 +R)M (1 + |g + x|)M

(1 + |g|)M

for any M ∈ N. For all ϕ ∈ S ⊆ E ,

|Tϕ| ≤ C
(1 +R)M

(1 + |g|)M
sup

x∈K,|α|≤N

(1 + |g + x|)M |Dαϕ(x)|

Applies to τgϕ, get a similar inequality.
Since

∑
g∈Zn(1 + |g|)−n−1 <∞ we deduce

|
∑
g

τgTϕ| ≤ C ′ sup
y∈Rn,|α|≤N

(1 + |y|)n+1|Dαϕ(y)|

so
∑

g τgT ∈ S ′ by ES.
For the converse, let T be periodic and ϕ ∈ D. If ψ is any ppu, have

Tϕ = T (ϕ
∑
g

τgψ) =
∑
g

T (ψτ−gϕ) =
∑
g

(ψT )(τ−gϕ) =
∑
g

τg(ψT )(ϕ)

14
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Theorem 5.27 (Convergence of Fourier series in S ′). Let U ∈ D′(Rn) be periodic. Then U =
∑

g∈Zn ugTe2πg

in S ′(Rn), where e2πh = ei⟨2πh,·⟩ and with Fourier coefficients ug =M(e2πh)

Lemma 5.28. If T ∈ S ′ s.t. (e−k − 1)T = 0 for all k ∈ Zn, then T =
∑

g∈Zn cgδ2πg in S ′. Have

|cg| ≤ C(1 + |g|)N for some N,C > 0

Proof. Let Λ∗ = {2πg : g ∈ Zn}. Take φ ∈ D(Rn) s.t. suppφ ∩ Λ∗ = ∅, so (e−k − 1)−1φ ∈ D and
T (φ) = (e−k − 1)T ((e−k − 1)−1φ) = 0 for all k, so T is also supported in Λ∗. Now take ppu ψ and
consider ψ̃ = ψ(·/(2π)). supp ψ̃ ⊂ {x ∈ Rn : ∀i, −2π < xi < 2π} and

∑
g∈Zn τ2πgψ̃ = 1 on Rn. Now

define Tg = (τ2πgψ̃)T which is supported in {2πg} and have
∑

g∈Zn Tg =
∑

g(τ2πgψ̃)T = T (in D′) and

(e−k − 1)Tg = (τ2πgψ̃)(e−k − 1)T for all k ∈ Zn.

Choose k = gj (j-th standard basis vector), have (e−k−1)Tg = (e−ixj−1)Tg = (e−(xj−2πg)−1)Tg
Taylor
=

(xj − 2πg)K(xj)Tg, where K is the Taylor poly which doesn’t vanish near 2πg, so (xj − 2πg)Tg = 0.
Take ϕ ∈ S(Rn) and apply Taylor expansion to get ϕ(x) = ϕ(2πg) +

∑n
j=1(xj − 2πg)ϕj(x) for some

ϕj ∈ S, so Tgϕ = Tg(ϕ(2πg)) +
∑n

j=1(xj − 2πg)Tϕj = δ2πg(ϕ)Tg(1). Let cg = Tg(1).

|cg| = |Tg(
∑

g′ τ2πg′ ψ̃)| = |Tg(τ2πgψ̃)|. Since Tg ∈ E ′ ⊆ S ′ and we have a characterization of S ′ in

ES3, have |cg| ≤ C0 supx∈Rn,|α|≤N (1 + |x|)N |Dαψ̃(x − 2πg)| for some N ∈ N, c > 0, and ≤ C1(1 +

|x|)N supy∈Rn,|α≤N |(1 + |y|)N |Dαψ̃(y)| ≤ C(1 + |g|)N . Therefore T =
∑

g cgδ2πg converges in S ′.

Proof of Thm. Apply the lemma to U . Û = (2π)n
∑

g∈Zn ugδ2πg, ug = cg/(2π)
n. Take inverse FT, see

U =
∑

g∈Zn ugTe2πg . Note that T 7→ M [T ] is cts on S ′, so M(e−2πkU) =
∑

g∈Zn ugM(e−2πkTe2πg ) =∫
Q e

i2π⟨g−k,x⟩dx = 1 if g = k and 0 otherwise.

Apply this to U =
∑

k δk =
∑

k τkδ0 with ppu ψ s.t. ψ(0) = 1. Compute Fourier coeffs. M(e−2πgU) =∑
k δk(e−2πgψ) = 1 for all g, so

∑
k∈Zn δk =

∑
k∈Zn Te2πk

in S ′. Testing this identity on ϕ(x − ·) for

ϕ ∈ S, x ∈ Rn. Get
∑

k ϕ(x − k) =
∑

k Te2πk
ϕ(x − ·) =

∑
k e

i2πk·xϕ̂(2πk) (Poisson summation formula
when x = 0).

[Owen Broke LATEX Today]

6 Sobolev Spaces and Elliptic PDEs

Let Ck(Ω) denote th normed space {f : Ω → R : Dαf exists for all 0 ≤ |α| ≤ k, ∥f∥Ck < ∞}, where
∥f∥Ck =

∑
0≤|α|≤k ∥Dαf∥∞. Similarly define the Hölder spaces for 0 < η < 1 as Ck,η(Ω) = {f ∈ Ck(Ω) :

∥f∥Ck,η <∞}, where ∥f∥Ck,η = ∥f∥k+
∑

|α|=k supx ̸=y
|Dαf(x)−Dαf(y)|

|x−y|η . Ck and Ck,η are Banach spaces.

We can replace ∥ · ∥∞ and Dα by Lp-norm and the weak derivative Dα
w.

Definition 6.1 (Sobolev space). Let k ∈ Z≥0, 1 ≤ p ≤ ∞. Then f ∈ W k,p(Ω) (Ω open) if Dα
wf ∈ Lp

for all 0 ≤ |α| ≤ k. Then norm on W k,p(Ω) is given by

∥f∥Wk,p =

 ∑
0≤|α|≤k

∥Dα
wf∥

p
Lp

1/p

if p <∞ and
∥f∥Wk,∞ = max

0≤|α|≤k
∥Dα

wf∥L∞

When Ω = Rn, p = 2, have

Definition 6.2. Let s ∈ R. Then Hs(Rn) consists of f ∈ S ′(Rn), (f = Tf ), s.t. f̂ ∈ L2
loc(Rn) and

∥f∥2Hs =
∫
Rn |f̂(u)|2(1 + |u|2)sdu

Note that Hs(Rn) is a Hilbert space for the inner product (f, g)Hs =
∫
Rn f̂(u)ĝ(u)(1 + |u|2)sdu, so

Hs = L2(µs) for some measure µs on Rn.
By Plancherel, for s ≥ 0, Hs(Rn) consists of elements of L2(Rn, dx)
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Proposition 6.3. For s ≥ 0, Hs(Rn) =W s,2(Rn) with equivalent norms

Proof.

Theorem 6.4 (Sobolev embedding). Let s > n/2 + k for k ∈ N and f ∈ Hs. Then ∃f∗ ∈ Ck(Rn) s.t.
f∗ = f a.e. and ∥f∗∥Ck ≤ Cs,n,k∥f∥Hs . In particular, there is an embedding Hs(Rn) ↪→ Ck(Rn).

Remark 17.

{∅}: Have Hs ⊆ Ck,η if s > n
2 + k + η.

{∅, {∅}}:
⋂

s>0H
s ⊆ C∞(Rn)

Proof. Take f ∈ S(Rn) and note

|Dαf(x)| = |F−1[uαf̂ ]|
R.L.
≤ 1

(2π)n

∫
Rn

|u||α||f̂(u)| (1 + |u|2)s/2

(1 + |u|2)s/2
du

C.S.
≤ 1

(2π)n

(∫
Rn

|u|2|α|

(1 + |u|2)s
du

)(∫
Rn

|f̂(u)|2(1 + |u|2)sdu
)

≤ Cs,n,k∥f∥Hs

For f ∈ Hs take fn ∈ S s.t. fn → f in Hs and a.e. (pass to a subseq if necessary). This is Cauchy in
Hs and by the same inequality in Ck, we have fn → f∗ in Ck by completeness. By uniqueness of limit,
we have f∗ = f a.e. so f∗ = f .

Consider
−∇2v + v = f (†)

where f ∈ Hs(Rn). Have Fourier transform ∇̂2 = −|u|2.

Theorem 6.5. There exists a unique solution v in Hs+2(Rn) to (†) and ∥v∥Hs+2 ≤ ∥f∥Hs (elliptic
regularity estimate)

Proof. Take FT get (1 + |u|2)v̂ = f̂ in S ′(Rn). For f ∈ L1
loc this has unique soln v̂(u) = f̂(u)

1+|u|2 , u ∈ Rn,

so v = F−1v̂.

∥v∥2Hs+2 =

∫
Rn

(1 + |u|2)s+r f̂(u)

(1 + |u|2)2
= ∥f∥2Hs

To study eqns restricted to open sets Ω ⊆ Rn with boundary ∂Ω, need to define the restriction of
f ∈ Hs to ∂Ω. If f ∈ Hs for s > n/2, then Sobolev embedding implies that f ∈ Cε for some ε > 0 and
the Sobolev trace f |∂Ω exists by uniform continuity. For general s > 1/2, have

Theorem 6.6 (Trace thm). There exists a bounded linear operator T : Hs(Rn) → Hs−1/2(Rn−1),
s > 1/2, s.t. for all f ∈ S(Rn), Tf = f |Rn−1×{0}

Proof. ES

Call T = TΣ for Σ = Rn−1 × {0} the boundary trace of f ∈ Hs. By change of coords, this operator
extends to T∂Ω for sufficiently regular Ω. In particular, we have T∂Ω : H1(Rn) ↪→ H1/2(∂Ω) ↪→ L2(∂Ω)
is bounded linear.

6.1 H1
0 (Ω)

Any f ∈ C∞
c (Ω) (sufficiently regular Ω) extends by zero to an element of H1(Rn) (hence in Hs(Rn) for

all s). Have Hilbert norm

∥f∥H1(Rn) =

∫
Rn

(1 + |u|2)||f̂(u)|2du = (2π)n
∫
Ω

(|f(x)|2 + |Df(x)|2|)dx

where Df is the gradient vector. Define H1
0 (Ω) = C∞

c (Ω)
∥·∥H1

in H1(Rn). This is not W 1,2 because

16



Proposition 6.7. Let f ∈ H1
0 (Rn). Then f(x) = 0 for almost every x ∈ Ωc and if ∂Ω is sufficiently

regular, then T∂Ωf = 0.

Proof. Take φ ∈ C∞
c ((Ωc)◦) and take fn ∈ C∞

c (Ω) s.t. fn → f in H1(Rn). Have Λφ(h) =
∫
Rn φh,

then Λφ ∈ (L2)′ ⊆ (H1)′, so 0 =
∫
Rn φfn = Λφ(fn) → Λφf =

∫
φf = 0, so supp(f) ⊆ Ω. Similarly,

0 = T∂Ωfn → T∂Ωf = 0, so f = 0 on ∂Ω.

Consider the BVP {
−∇2v + v = f on Ω

v = 0 on ∂Ω

Interpret this as ∫
Ω

(−∇2v + v)φ
ibp
=

∫
∂Ω

∇v · ∇φ+

∫
Ω

vφ =

∫
Ω

fφ

for f ∈ L2, v ∈ H1.
Since C∞

c is dense in H1
0 and L2, this equation is the same as solving

⟨v, φ⟩H1 = ⟨f, φ⟩L2 (†′)

for all φ ∈ H1
0 (Ω).

Theorem 6.8. For eveyr f ∈ L2(Ω), there exists a unique v ∈ H1
0 (Ω) s.t. (†′) holds and ∥v∥H1 = ∥f∥L2 .

Therefore the solution map S : f 7→ v = vf is a bounded linear form L2(Ω) → H1
0 (Ω) and self-adjoint

for L2(Ω).

Proof. Define Λf (ϕ) =
∫
Ω
fϕ so that Λf ∈ (H1

0 )
′ since

|Λf (ϕ)|
C.S.
≤ ∥f∥L2∥ϕ∥L2 ≤ ∥f∥L2∥ϕ∥H1

Hence by Riesz representation thm on H1
0 , there exists a uniuque v ∈ H1

0 s.t. ⟨v, ϕ⟩H1 = ⟨f, ϕ⟩L2 for all
ϕ ∈ H1

0 .
Next take f1, f2 ∈ L2(Ω), α ∈ R, and take v1 = S(f1) and v2 = S(f2) and define v = v1+αv2. Then,

⟨v, ϕ⟩H1 = ⟨v1 + αv2, ϕ⟩H1 = ⟨v, ϕ⟩H1 + α⟨v2, ϕ⟩H1 == ⟨f1, ϕ⟩L2 + α⟨f2, ϕ⟩L2 = ⟨f1 + αf2, ϕ⟩L2

So S(f1) + αS(f2) = S(f1 + αf2). Also have

∥S(f)∥H1 = ∥vf∥H1
Riesz
= ∥Λf∥ ≤ ∥f∥L2

To see it’s self-adjoint,

⟨S(f), g⟩L2 = ⟨g, S(f)⟩L2 = ⟨S(f), S(g)⟩H1 = ⟨S(g), S(f)⟩H1 = ⟨f, S(g)⟩L2

To study regularity of v, we introduce

Hs
loc(Ω) = {f ∈ L2

loc(Ω) : ∀ξ ∈ C∞
c (Ω), fξ ∈ Hs(Rn)}

Proposition 6.9. If f ∈ Hs
loc for s > k + n/2, then f ∈ Ck(U) for any U open s.t. Ū ⊆ Ω.

Proof. Given U , pick ξ ∈ C∞
c s.t. ξ = 1 on Ū and note that fξ ∈ Hs(Rn) ⊆ Ck(Rn) (Sobolev

embedding), so f = fξon U , the result then follows.

Corollary 6.10.
⋂

s>0H
s
loc(Ω) ⊆ C∞(Ω).

Note that f ∈ C∞(Ω) may be unbounded at ∂Ω.

Theorem 6.11 (Interior regularity). Let f ∈ L2(Ω) and suppose v ∈ H1
0 solves (†′). Then v ∈ H2

loc(Ω).
If additionally f ∈ L2(Ω) ∩Hk

loc(Ω), then v ∈ Hk+2
loc (Ω).
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Proof. Let K ⊆ Ω be any compact set, and take χ ∈ C∞
c (Ω) s.t. χ = 1 on K. Take φ ∈ S(Rn) and set

ϕ = χφ ∈ H1
0 . Then (†′) implies ∫

Ω

(Dv ·D(φχ) + vφχ)dx =

∫
Ω

fφχdx

for all φ ∈ S(Rn). Using chain rule and IBP, we rearrange the equation above to get∫
Ω

(D(vχ) ·Dφ+ vχφ)dx =

∫
Ω

gφdx

where g = −(Dv) · (Dχ)− vDχ+ fχ ∈ L2(Rn). IBP again, can see that vχ solves −∇2(vχ) + vχ = g in
S ′(Rn). Hence by elliptic regularity estimate, ∥vχ∥H2 ≤ ∥g∥L2 <∞.

To prove v ∈ H2
loc, take ξ ∈ C∞

c (Ω) and K = supp(ξ) s.t. vξ = vχξ. Then ∥vξ∥H2 = ∥vχξ∥H2 ≤
Cn∥vχ∥H2∥ξ∥L2 < ∞ (∥fg∥L2 ≤ ∥f∥L2∥g∥L∞ + chain rule) We recognize that g ∈ H1

loc(Ω) whenever
f ∈ H1

loc(Ω) so repeating the preceding argument given v ∈ H3
loc. Can prove the rest of the theorem

using the inequality ∥fg∥Hs ≤ Cn,s∥f∥Hs∥g∥Cs

Corollary 6.12. If f ∈ C∞(Ω)∩L2(Ω), then v ∈ H1
0 (Ω)∩C∞(Ω) solves −∇2v+v = f on Ω (pointwise)

Theorem 6.13 (Rellich-Kondrashov). Let Ω ⊆ Rn be open and bounded. Let uj ∈ H1
0 (Ω) s.t. ∥uj∥H1 ≤

K for all j = 1, 2, ..., and some K > 0. Then ∃u ∈ H1
0 (Ω) s.t. ujk → u in L2(Ω) along a subsequence.

Proof. By Banach-Alaoglu in H1
0 (Ω), we obtain ujk ⇀ u in H1

0 and then in L2 (weakly), and ∥u∥H1 ≤ K.
Also ujk , u vanish a.e. on Ωc so

∥ujk − u∥L2(Ω) = ∥ujk − u∥L2(Rn) =
1

(2π)n
∥ûjk − û∥L2(Rn)

=
1

(2πn)

(∫
|z|>R

|ûjk(z)− û(z)|2dz +
∫
|z|<R

|ûjk(z)− û(z)|2dz

)

Given ε > 0, have∫
|z|>R

|ûjk(z)− û(z)|2dz ≤
∫
|z|>R

1 + |z|2

1 + |z|2
(|ûjk(z)|2 + |û(z)|2)dz ≤ 2

1 +R2
(∥ujk∥2H1 + ∥u∥2H1) < ε

for R sufficiently large.
For z ∈ Rn fixed,

ûjk(z) =

∫
Rn

e−ix·zujk(x)dx =

∫
Ω

e−ix·zujk(x)dx = ⟨e−i⟨·,z⟩, ujk⟩ → ⟨e−i⟨·,z⟩, u⟩L2(Ω) = û(z)

by weak convergence. Also

|ûjk(z)|+ |û(z)| ≤ ∥ujk∥L1(Ω) + ∥u∥L1(Ω)

C.S.
≤ Cω(∥ujk∥L2(Ω) + ∥u∥L2(Ω)) ≤ 2CΩK

which is dz-integrable on {z : |z| ≤ R}, so
∫
|z|<R

|ûjk(z)− û(z)|2dz → 0 by DCT.

Corollary 6.14. The solution operator S from (†′) is a compact linear self-adjoint operator on L2(Ω)

Proof. S maps L2 into H1
0 (bounded linear) and use Rellich-Kondrashov.

By spectral theorem, there exists ONB {wk : k ∈ N} of L2(Ω) and real e-values µk ↓ 0 as k → ∞ s.t.

Swk = µkwk

in L2(Ω). Thus wk ∈ H1
0 . For all φ ∈ H1

0

⟨wk, φ⟩L2

(†′)
= ⟨Swk, φ⟩H1 = µk⟨wk, φ⟩H1
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Tes φ = wk, see that 1 = ⟨wk, wk⟩L2 = µk∥wk∥H1 , so µk > 0 for all k. In D′(Ω),

(−∇2 + I)wk = (−∇2 + I)
µk

µk
wk =

1

µk
(−∇2 + I)Swk =

wk

µk

Therefore,

−∇2wk =

(
1

µk
− 1

)
wk = λkwk

where λk = 1
µk

− 1 ↑ ∞ are the e-values of −∇2. The weak form is

⟨Dwk, Dφ⟩L2 = λk⟨wk, φ⟩L2

for all k and all φ ∈ D(Ω) (in fact H1
0 (Ω)) Note that wk = f in (†′) and in H1

0 , so iterating the interior
regularity thm, wk ∈ C∞(Ω). Thus −∇2wk = λkwk is true on Ω ptwise.

Theorem 6.15 (Poincare inequality). For all u ∈ H1
0 (Ω),

⟨Du,Du⟩L2

⟨u, u⟩L2

≥ λ1 > 0

Proof. ES

We can now solve the Dirichlet problem for the Laplace equation{
−∇2v = f on Ω

v = 0 on ∂Ω

or the weak form: find v ∈ H1
0 ⟨Dv,Dφ⟩L2 = ⟨f, φ⟩L2 for all φ ∈ D(Ω). Denote this by (∗)

Theorem 6.16. There exists a unique solution v ∈ H1
0 (Ω) to (∗), for any f ∈ L2(Ω).

v =

∞∑
k=1

1

λk
⟨wk, f⟩L2wk

Proof. Take partial sums vJ =
∑J

n=1 λ
−1
k ⟨wk, f⟩L2wk, J ∈ N, then (for J ′ < J)

∥vJ − vJ′∥2H1 = ⟨vJ − vJ′ , vJ − vJ′⟩L2 + ⟨D(vJ − vJ′), D(vJ − vJ′)⟩

=

J∑
k=J′+1

λ−1
k ⟨wk, f⟩2 +

J∑
k,k′=J′+1

λ−1
k λ−1

k′ ⟨f, wk⟩⟨f, wk′⟩⟨Dwk, Dwk′⟩L2

=

J∑
k=J′+1

λ−1
k ⟨wk, f⟩2 +

J∑
k,k′=J′+1

λ−1
k λ−1

k′ ⟨f, wk⟩⟨f, wk′⟩λ−1
k ⟨wk, wk′⟩L2

≤
∞∑

k=J′+1

(λ−2
k + λ−1

k ⟨wk, f⟩2L2

≤ C(λ1)

∞∑
k=J′+1

⟨f, wk⟩2
J′→∞−→ 0

So vJ is Cauchy in H1
0 , so v ∈ H1

0 Can check

⟨Dv,Dφ⟩L2
ibp
= ⟨v,−∇2φ⟩L2 =

∞∑
k=1

λ−1
k ⟨v, wk⟩L2⟨wk,−∇2φ⟩L2

=

∞∑
k=1

⟨v, wk⟩L2⟨wk, φ⟩L2

= ⟨v, φ⟩L2

We used that ⟨wk,−∇2φ⟩L2 = ⟨Dwk, Dφ⟩L2 = λk⟨wk, φ⟩L2 .
Need to show uniqueness. Suppose v′ ∈ H1

0 (Ω) s.t. (∗) holds. Then let w = v − v′ ∈ H1
0 (Ω)

where ⟨Dw,Dφ⟩L2 = ⟨f − f, φ⟩L2 = 0 for all φ ∈ H1
0 (Ω). Now ∥w∥2H1 = ⟨w,w⟩L2 + ⟨Dw,Dw⟩L2 ≤

( 1
λ1

+ 1)⟨Dw,Dw⟩L2 = 0, so w = 0 a.e.

Remark 18. One can also show interior regularity estimates to deduce that for f ∈ C∞(Ω)∩L2(Ω) then
v ∈ C∞(Ω).
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7 Variational Problems* (non-examinable)

Consider minimizing a functional F (u) = ∥u∥2H2 − ⟨f, u⟩L2 over H1
0 (Ω), where f is fixed in L2(Ω)

Theorem 7.1. Let f ∈ L2(Ω). Then inf{F (u) : u ∈ H1
0 (Ω)} ≥ σ > −∞. Moreover, there exists a

unique w ∈ H1
0 s.t. F (w) = σ, and w solves the PDE −∇2w + w = f in the weak sense.

Proof. Use the inequality ab ≤ a2/2+b2/2 for a, b ≥ 0. By Cauchy-Schwarz, F (u) = ∥u∥2H1 −2⟨f, u⟩L2 ≥
∥u∥2H1 − 2∥f∥L2∥u∥L2 ≥ ∥u∥2H1 − 2∥f∥2L2 − 1

2∥u∥
2
L2 ≥ 1

2∥u∥
2
H1 − 2∥f∥2L2 ≥ −2∥f∥L2 > −∞.

Then take uk ∈ H1
0 s.t. F (uk) → σ. WLOg, assume |F (uk)| ≤ F̄ < ∞. Then, ∥uk∥2H1 = F (uk) +

2⟨f, uk⟩L2 ≤ F̄ + 2∥f∥L2∥uk∥L2 ≤ F̄ + 2∥f∥2L2 +
1
2∥uk∥

2
H1??. Subtracting we see ∥uk∥2H1 ≤ 2F̄ + 4∥f∥2L2

for all k, so uk is bounded in H1
0 . By Banach-Alaoglu, there exists ukj

⇀ w weakly in H1
0 and L2

for some w ∈ H1
0 (Ω). By sheet 2, know that ∥w∥2H1 ≤ lim inf ∥ukj

∥2H1 and ⟨f, w⟩ = lim⟨f, ukj
⟩L2 . We

have F (w) = ∥w∥2H1 − 2⟨f, w⟩L2 ≤ lim inf(∥ukj∥H1 − 2⟨f, ukj ⟩L2) = σ, and F (w) ≥ σ by defn of inf, so
F (w) = σ.

To prove uniqueness, it suffices to show that w solves the PDE. For all v ∈ H1
0 , t ∈ R, we have

F (w) ≤ F (w + tv) and d
dtF (w + tv)|t=0 = 0. Then F (w + tv) = ∥w + tv∥2H1 − 2⟨f, w + tv⟩L2 =

∥w∥2H1+t2∥v∥2H1+2t⟨w, v⟩H1−2t⟨f, v⟩L2−2⟨f, w⟩L2 , so d
dt (F (w+tv)) = 2t∥v∥H1+2(⟨w, v⟩H1−⟨f, v⟩L2).

At t = 0, must have ⟨w, v⟩H1 = ⟨f, v⟩L2 for all v ∈ H1
0 .
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