Analysis of Functions

Kevin

January 2025

1 Review of Basic Concepts

q: (Owen's signature)

1.1 Probmeas

- 1. The Lebesgue measure is inner regular, i.e., for all $A \in B(\mathbb{R}^n)$, $\mu(A) = \sup\{\mu(K) : K \subseteq \mathbb{R}^n\}$ $A, K \text{ compact}\}.$
- 2. Recall that μ extends to the μ -completion of \mathcal{B} , which equals $M_{\mu} = \{B \cup A : B \in \mathcal{B}, A \in \mathcal{N}, \ \mu(A) = \{B \in \mathcal{B}, A \in \mathcal{B}, A \in \mathcal{N}, \ \mu(A) = \{B \in \mathcal{B}, A \in$ 0}.
- 3. For measurable functions $f: E \to F$, if $(F, \mathcal{F}) = (\mathbb{R}, \mathcal{B})$ (or $(\mathbb{C}, \mathcal{B})$), then we say that f is Borel. This extends to maps taking values $\pm \infty$ if $f^{-1}(\pm \infty) \in \mathcal{E}$. If f takes values in $[0, \infty]$, then we say $f \ge 0$ (non-negative).
- 4. Recall MCT and DCT.

L^p -spaces and Approximation

For $f:(E,\mathcal{E},\mu)\to\mathbb{R}$ (or \mathbb{C}), define

$$\begin{split} \|f\|_{L^p} &= \left(\int_E |f|^p d\mu\right)^{1/p}, \ 1 \leq p < \infty \\ \|f\|_{L^\infty} &= \operatorname{ess\,sup} |f| = \inf\{\lambda \geq 0: |f| \leq \lambda \text{ a.e.}\} \end{split}$$

We use $\|\cdot\|_{\infty}$ to denote the usual sup-norm. Define $L^p(E,\mu) = \{f: E \to \mathbb{R} : \text{meas. } \|f\|_{L^p} < \infty\}$ Recall Riesz-Fischer Theorem. Also recall the spaces $C^k(\mathbb{R}^n)$, the set of all functions on \mathbb{R}^n with continuous partial derivatives up to order k. We note that $C^{\infty}(\mathbb{R}^n) = \bigcap_{k \geq 0} C^k(\mathbb{R}^n)$. Note that this includes unbounded smooth functions. Use subscript c to denote the linear subspaces consisting of compactly supported functions.

Remark 1. $C_c^{\infty}(\mathbb{R}^n)$ is non-empty, e.g.,

$$\psi(x) = \begin{cases} e^{\frac{1}{|x|^2 - 1}} & |x| < 1\\ 0 & \text{o/w} \end{cases}$$

Theorem 1.1. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, dx)$ for $1 \leq p < \infty$.

⟨-: (Owen's signature)

We admit the following lemma from PM.

Lemma 1.2. $C_c(\mathbb{R}^n)$ is dense in L^p , $1 \leq p < \infty$.

Recall convolution and basic properties including commutativity, associativity, and $\int_{\mathbb{R}^n} f * g dx = \int_{\mathbb{R}^n} f \int_{\mathbb{R}^n} g$ (translation invariance and Fubini).

Recall multi-index notation $\alpha \in \mathbb{Z}_+^n$ is written as $\alpha = (\alpha_1, ..., \alpha_n)$ with order $|\alpha| = \alpha_1 + ... + \alpha_n$ and we set $\alpha! = \alpha_1! \cdots \alpha_n!$, and for $x \in \mathbb{R}^n$, we write $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, so the partial differential operator becomes

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} ... \partial x_n^{\alpha_n}}$$

In particular $D_i = D^{(0,...,1,0,...,0)}$

Theorem 1.3. Let $f \in L^1_{loc}$ (i.e., $f1_K \in L^1$ for any $K \subseteq \mathbb{R}^n$ compact), and $g \in C^k_c(\mathbb{R}^n)$. Then $f * g \in C^k(\mathbb{R}^n)$ and for all $0 \le |\alpha| \le k$, we have

$$D^{\alpha}(f * g) = f * (D^{\alpha}g)$$

Proof. Recall the translation operator $\tau_z h = h(\bullet - z), z \in \mathbb{R}^n$. Then for all $u \in \mathbb{R}^n$,

$$\tau_z(f * g)(x) = \int_{\mathbb{R}^n} g(x - u - y) f(y) dy$$

Since $g \in C_c(\mathbb{R}^n)$ we have $|g(x-u-y)| \le ||g||_{\infty} 1_K$ for all $|u| \le 1$, where $K = K_{x,g}$ is a compact set, so tht $||g||_{\infty} 1_K |f|$ gives an integrable upper bounde for the integrand. Since $g(x-u-y) \to g(x-y)$ as $u \to 0$, we have pointwise convergence. Apply DCT, we see that f * g is cts.

Now for k = 1, we define difference operators $\forall e_i$ (standard basis vector) by $\Delta_h^i g(z) = \frac{g(z + he_i) - g(z)}{h}$ which converges to $D_i g(z)$. We can write

$$\Delta_h^i(f * g)(x) = \int_{\mathbb{R}^n} \Delta_h^i g(x - y) f(y) dy$$

Apply mean value inequality, get $|\Delta_h^i g(x-y)| \leq ||D_i g||_{\infty} 1_K$. Apply DCT, $\Delta_h^i (f * g) \to f * (D_i g)$, which is continuous, so $f * g \in C^1$. Induction...

Proposition 1.4 (Continuity of translation in L^p). Let $1 \le p < \infty$. Then $\|\tau_z f - f\|_{L^p} \to 0$ as $z \to 0$ for all $f \in L^p$.

Proof. Hold for cts functions with compact support. Then apply $\varepsilon/3$ -argument.

Theorem 1.5 (Minkowski's inequality for integrals). Let $F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a measurable non-negative or $dx \otimes dx$ -integrable function. Then

$$\left\| \int_{\mathbb{R}^n} F(x, \cdot) dx \right\|_{L^p} \le \int_{\mathbb{R}^n} \|F(x, \cdot)\|_{L^p} dx$$

Proof. Example sheet.

Theorem 1.6 (Mollification/Approximate identity). Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be non-negative s.t. $\int_{\mathbb{R}^n} \varphi(x) dx = 1$. Define $\varphi_{\varepsilon}^{-n} \varphi(\cdot/\varepsilon)$, $\varepsilon > 0$. Then for $1 \leq p < \infty$ and any $f \in L^p$,

$$||f - \varphi_{\varepsilon} * f||_{L^p} \xrightarrow{\varepsilon \to 0} 0$$

Proof. For $f \in L^p$, $x \in \mathbb{R}^n$,

$$|\varphi_{\varepsilon} * f(x) - f(x)| = \left| \int_{\mathbb{R}^n} f(x - y) \varepsilon^{-n} \varphi(y/\varepsilon) dy - f(x) \right|$$
$$= \left| \int_{\mathbb{R}^n} (f(x - \varepsilon u) \varphi(u) - f(x)) du \right|$$
$$\leq \int_{\mathbb{R}^n} |f(x - \varepsilon) - f(x)| \varphi(u) du$$

Apply Minkowski's inequality for integrals,

$$\|\varphi_{\varepsilon} * f - f\|_{L^p} \le \int_{\mathbb{R}^n} \|\tau_{\varepsilon u} f = f\|_{L^p} \varphi(u) du$$

This converges to 0 as $\varepsilon \to 0$ by DCT.

In particular, since $C_c(\mathbb{R}^n)$ is dense in L^p and $\{\varphi_{\varepsilon} * f : f \in C_c(\mathbb{R}^n)\} \subseteq C_c^{\infty}(\mathbb{R}^n)$, we have also proved that $C_c^{\infty}(\mathbb{R}^n)$ is dense in L^p .

1.3 Lebesgue's Differentiation Theorem

Definition 1.7 (Hardy-Littlewood maximal function). For $f \in L^1$, $x \in \mathbb{R}^n$, let

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) dy$$

Lemma 1.8. For $f \in L^1$, Mf maps \mathbb{R}^n to \mathbb{R} and is Borel-measurable, and for all $\lambda > 0$,

$$|\{x: Mf(x) > \lambda\}| \le \frac{3^n}{\lambda} ||f||_{L^1}$$

Proof. Define $A_{\lambda} = \{x : Mf(x) > \lambda\}$. If $x_m \in A_{\lambda}^c$ s.t. $x_m \to x \in \mathbb{R}^n$. Then

$$\frac{1}{|B_{r_x}(x_m)|}\int_{\mathbb{R}^n}1_{B_{r_x}(x_m)}|f(y)|dy\leq \lambda$$

by definition of A_{λ}^{c} . Apply DCT, get a contradiction, so A_{λ}^{c} is closed, so A_{λ} is open. This gives measurability.

To prove the inequality, we use the inner regularity of μ and take an arbitrary compact subset $K \subseteq A_{\lambda}$. K has an open cover $\{B_{r_x}(x) : x \in A_{\lambda}\}$. Pass to a finite subcover $B_1, ..., B_N$ of such balls. By Wiener's covering lemma (ES1), reduce to a subcollection osf disjoint balls $B_1, ..., B_k$ s.t.

$$|K| \le 3^n \sum_{i=1}^k |B_i| = \frac{3^n}{\lambda} \sum_{i=1}^k \lambda |B_i| \le \frac{3^n}{\lambda} \sum_{i=1}^k \int_{B_i} |f(y)| dy \le \frac{3^n}{\lambda} ||f||_{L^1}$$

By inner regularity, $|A_{\lambda}| \leq \sup\{|K| : K \subseteq A_{\lambda} \text{ cpt}\} \leq \frac{3^n}{\lambda} ||f||_{L^1}$.

Theorem 1.9. Let $f \in L^1(\mathbb{R}^n)$, $B_r(x)$ ball centered at x with radius r. Then

$$\lim_{r\to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0, \ a.e. \tag{\dagger}$$

Remark 2. The set of points $A = \{x \in \mathbb{R}^n : (\dagger)\}$ are called Lebesgue points of f.

$$\langle (\rangle - :$$
 (Owen's Signature)

Proof. Consider

$$\bar{A}_{\lambda} = \left\{ x : \lim_{r \to 0} |B_r(x)^{-1}| \int_{B_r(x)} |f(y) - f(x)| dy > 2\lambda \right\}$$

Let $\varepsilon > 0$. Pick $g \in C_c(\mathbb{R}^n)$ s.t. $||f - g||_{L^1} < \varepsilon$. Then

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy \leq \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - g(y)| dy + \frac{1}{|B_r(x)|} \int_{B_r(x)} |g(y) - g(x)| dy + |f(x) - g(x)|$$

g is unif. cts, so the second term is small. If $x \in \bar{A}_{\lambda}$, either the first term or the third term is $> \lambda$. The third term is bounded using Markov's inequality

$$\{x: |f(x) - g(x)| > \lambda\} \le \frac{\|f - g\|_{L^1}}{\lambda} < \varepsilon/\lambda$$

For the first term, use HL-maximal inequality,

$$|\{x: \text{first term} > \lambda\}| \le |\{x: M(f-g)(x) > \lambda\}| \le \frac{3^n}{\lambda} ||f-g||_{L^1} \le 3^n \varepsilon / \lambda$$

Therefore $|\bar{A}_{\lambda}| \leq C\varepsilon$. So $|A^c| \leq |\bigcup_n \bar{A}_{1/n}| \leq \sum_n |\bar{A}_{1/n}| = 0$.

Remark 3. In particular, for $f \in L^1(\mathbb{R})$, $\lim_{h\to 0} \int_x^{x+h} f(y) dy = f(x)$ a.e.

Theorem 1.10 (Egorov). Let $E \in B(\mathbb{R}^n)$, $|E| < \infty$. Suppose $f_j : E \to \mathbb{R}$ measurable s.t. $f_j \to f$ a.e. on E. Then

$$\forall \varepsilon > 0, \ \exists A_{\varepsilon} \ s.t. \ |E \setminus A_{\varepsilon}| < \varepsilon \ and \ f_i \stackrel{unif}{\to} f \ on \ A_{\varepsilon}$$

Proof. By discarding a null set, we may assume that $f_i \to f$ pointwise on E. Define

$$E_k^m = \{x : \forall j > k, |f_j(x) - f(x)| < 1/m\}$$

 E_k^m is increasing as $k \to \infty$, and $\bigcup_k E_k^m = E$ by pointwise convergence. Pick a subsequence k_m s.t. $|E \setminus E_{k_m}^m| \le \varepsilon 2^{-m}$. Define $A_\varepsilon = \bigcap_m E_{k_m}^m$. For all $x \in A_\varepsilon$, $|f_j(x) - f(x)| < 1/m$ whenever $j > k_m$, so the convergence is uniform on A_ε , and

$$|E \setminus A_{\varepsilon}| \le \sum_{m} |E \setminus E_{k_m}^m| \le \varepsilon$$

Theorem 1.11 (Lusin). Let $|E| < \infty$, $f: E \to \mathbb{R}$ (or \mathbb{C}) Borel-measurable. Then

$$\forall \varepsilon > 0, \ \exists F_{\varepsilon} \ s.t. \ |E \setminus F_{\varepsilon}| < \varepsilon \ and \ f : F_{\varepsilon} \to \mathbb{R} \ cts$$

Remark 4. Note that f is not necessarily continuous F_{ε} when regarded as a map defined on E.

Proof. First prove it for simple functions $f = \sum_{i=1}^m a_i 1_{A_i}$ (wlog assume A_i disjoint), where $\bigcup A_i = E$. Use inner regularity to find compact sets $K_k \subseteq A_k$ s.t. $|A_k \setminus K_k| < \varepsilon/m$. f is cts on $\bigcup_k K_k$ and $|E \setminus \bigcup_k K_k| \le \varepsilon$. For general f, approximate f ptwise by simple functions on E. Pick A_ε s.t. $|E \setminus A_\varepsilon| < \varepsilon/2$ s.t. $f_m \to f$ unif. by Egorov. Take C_m compact s.t. $|E \setminus C_m| < \varepsilon 2^{-m-1}$. Then Take $F_\varepsilon = A_\varepsilon \cap \bigcap_m C_m$. Can check that $|E \setminus F_\varepsilon| \le \varepsilon$.

Recall Riesz representation theorem in Hilbert spaces (bounded linear functionals can be written as taking inner product with a certain element).

Consider two measures μ, ν on a measurable space (E, \mathcal{E}) .

Definition 1.12. We say that ν is absolutely continuous w.r.t μ if $\mu(A) = 0 \implies \nu(A) = 0$ for any $A \in \mathcal{E}$. We write $\nu \ll \mu$. If $\nu \ll \mu$ and $\mu \ll \nu$ both hold, then we say that μ, ν are mutually absolutely continuous.

If there exists $B \in \mathcal{E}$ s.t. $0 = \mu(B) = \nu(B^c)$, then we say that μ, ν are mutually singular, and we write $\mu \perp \nu$.

Theorem 1.13 (Radon-Nikodym). Let μ, ν be finite measures on (E, \mathcal{E}) s.t. $\nu \ll \mu$. Then $\exists w \in L^1(\mu)$, $w \geq 0$, s.t. for all $A \in \mathcal{E}$, $\nu(A) = \int_A d\nu = \int_A w d\mu$.

Remark 5.

- 1) w is unique.
- 2) Will show that $\int_E h d\nu = \int_E h w d\mu$ for all $h \ge 0$ measurable. In particular, $w = d\nu/d\mu$ (Leibniz notation) is called the Radon-Nikodym derivative (or density) of ν w.r.t. μ .
- 3) The result extends to μ, ν σ -finite.

Proof (von Neumann). Define $\alpha = \mu + 2\nu$ and $\beta = 2\mu + \nu$. On $L^2(\alpha)$, consider the map $\Lambda(f) = \int_E f d\beta$. This is bounded since

$$|\Lambda(f)| \le \int_E |f| d\beta \le 2 \int_E |f| d\alpha \le 2\sqrt{\alpha(E)} ||f||_{L^2(\alpha)}$$

By Riesz, there exists $g \in L^2(\alpha)$ s.t. $\Lambda(f) = \int_E gfd\alpha$, i.e., $\int f(2d\mu + d\nu) = \int gf(d\mu + 2d\nu)$ for all $f \in L^2(\alpha)$. Rearrange,

$$\int_{E} f(2-g)d\mu = \int_{E} f(2g-1)d\nu$$

Consider $A_j = \{x : g(x) \leq \frac{1}{2} - \frac{1}{i}\}, j \in \mathbb{N}$. Thus, by taking $f = 1_{A_j}$,

$$\frac{3}{2}\mu(A_j) \le \int_E f(2g-1)d\mu \le -\frac{2}{j}\nu(A_j)$$

So, $g \ge 1/2$ a.e. (w.r.t. both μ, ν). Similarly, by considering $\{x : g(x) \ge 2 + 1/j\}$, can prove that $g \le 2$ μ -, ν - a.e. We extend to simple functions and then to non-negative measurable functions by MCT.

Consider $f = 1_{\{x:g(x)=1/2\}}$, then get $\frac{3}{2}\mu(\{x:g(x)=1/2\}) = 0$, so $\nu(\{x:g(x)=1/2\}) = 0$. Let $h \ge 0$ measurable and define $f = \frac{h}{2g-1}$ and $w = \frac{2-g}{2g-1}$ (define it to be 0 if 2g-1=0). Now

$$\int_{E} h d\nu = \int_{E} f(2g-1)d\nu = \int_{E} f(2-g)d\mu = \int_{E} hwd\mu$$

Done by taking $h = 1_A$. Note that $w \in L^1(\mu)$ since $\int_E w d\mu = \int_E 1_E w d\mu = \nu(E) < \infty$.

Remark 6.

1) If \mathbb{P} is a prob measure on B s.t. $\mathbb{P} \ll dx$, where dx is the Lebesgue measure, then $\frac{d\mathbb{P}}{dx} = p(x)$ is the Lebesuge prob density of \mathbb{P} . Moreover, there exists a unique decomposition $\mathbb{P} = \mathbb{P}_{\ll} + \mathbb{P}_{\perp}$. (ESheet)

$\mathbf{2}$ Dual Spaces

Definition 2.1. Let X be a topological vector space. The top dual space is

$$X' = \{\Lambda : X \to \mathbb{R} \text{ linear and cts}\}\$$

If $(X, \|\cdot\|)$ is a normed space, then cts \Leftrightarrow bounded, and X' has the operator norm. X'' = (X')' is called the bidual space.

We have a point evaluation map $\Lambda \mapsto \Lambda(x)$ for each $x \in X$. [Note that $|\Lambda(x)| \leq ||\Lambda||_{X'}||x||_X \leq$ $C\|\lambda\|_{X'}$. Can identify $x\mapsto (\Lambda\mapsto\Lambda(x))$ and regard X as a subspace of X".

Definition 2.2. If X'' = X, then say X is reflexive.

For $1 , consider the Hölder conjugate q of p. Each <math>q \in L^q$ defines a linear functional on L^p by $\Lambda_q(f) = \int fg dx$. This is bounded since $|\Lambda_q(f)| \leq ||g||_{L^q} ||f||_{L^p}$. In fact $||\Lambda_q|| = ||g||_{L^q}$. Get an embedding $L^q \subseteq (L^p)'$.

Theorem 2.3. For $1 \le p < \infty$, $(L^p)' = L^q$. For $1 , <math>L^p$ is reflexive.

Remark 7. The result is false for $p = \infty$, so L^1 is not reflexive.

Lemma 2.4. Under the hypothesis of the theorem, let $U \in (L^p)'$ positive, then $\exists g \in L^q$ s.t. $U(f) = \Lambda_q$ and $||U|| = ||g||_{L^q}$.

Proof of lemma. On \mathbb{R}^n consider the finite measure μ with density $e^{-|x|^2}$. Further define, for each $A \in \mathcal{B}$,

$$\nu(A) = U(e^{-|x|^2/p} 1_A) \ge 0$$

To show that ν is countably additive, consider $A_m \in \mathcal{B}$ s.t. $A_m \downarrow \bigcap_m A_m = \emptyset$ and note $\nu(A_m) = \emptyset$ $U(e^{-|x|^2/p}1_{A_m}) \leq ||U|| |||e^{-|x|^2/p}1_{A_m}||_{L^p} \to 0$ by DCT. Hence ν is a finite measure. Note that $\nu \ll \mu$. [If $\mu(A) = 0$, then $\nu(A) \leq ||U|| |||e^{-|x|^2/p}||_{L^p} = ||U||\mu(A)^{1/p} = 0$.] By Radon-Nikodym, $\exists \mathcal{G} \in L^1(\mu)$ non-negative s.t. $\nu(A) = \int_A \mathcal{G} d\mu$. Consider a simple function $F = \sum_k a_k 1_{A_k}$. Compute

$$U(e^{-|x|^2/p}F) = \int \sum_k a_k 1_{A_k} \mathcal{G} e^{-|x|^2} dx = \int e^{-|x|^2/p} \sum_k a_k 1_{A_k} \mathcal{G} e^{-|x|^2/q} dx$$

Set $g = \mathcal{G}e^{-|x|^2/q}$. Note that $\{e^{-|x|^2/p}F : F \text{ simple}\}$ is dense in $L^p \cap \{\geq 0\}$. Since $fg \in L^1$ [Note $\int |fg| = \int |f|g = U(|f|) \le ||U|| ||f||_{L^p} < \infty$]. Decomposing fg into $f_+g - f_-g$ and taking limits, we see that $U(f) = \int fg$ for all $f \in L^p$.

(cf. ES1), have $\|g\|_{L^q} = \sup\{\int |fg| : \|f\|_{L^p} \le 1\} = U(|f|) \le \|U\| < \infty$ and $\|U\| = \sup_{\|f\|_{L^p} \le 1} |\int fg| \le 1$ $||g||_{L^q}$ by Hölder, so $||U|| = ||g||_{L^q}$.

Proof of thm. Note (ES) that $\Lambda \in (L^p)'$ can be uniquely decomposed as $\Lambda_+ - \Lambda_-$, where Λ_\pm are positive linear functionals $(\Lambda_{\pm}(h) \geq 0 \text{ for all } h \geq 0 \text{ a.e.})$. Apply the preceding lemma.

We can characterize duals of subspace of L^{∞} , e.g., any finite measure defines a linear functional in $C_c(\mathbb{R}^n)'$ by $f \mapsto \mu(f)$.

Definition 2.5. A measure is regular on \mathbb{R}^n if $\forall \varepsilon > 0, \forall A \in \mathcal{B}, \exists C \text{ closed}, D \text{ open s.t. } C \subseteq A \subseteq D \text{ s.t.}$ $\mu(D \setminus C) < \varepsilon$

Theorem 2.6 (Riesz). Let $\Lambda \in (C_c(\mathbb{R}^n))'$ be positive. Then $\exists \ a \ \sigma$ -algebra $M \supseteq \mathcal{B}$ and a regular measure μ on M s.t. $\Lambda(f) = \int_{\mathbb{R}^n} f d\mu$.

Proof omitted.

(B (Owen's Signature)

3 Weak and Weak* Topology

Definition 3.1. A semi-norm p on a vector space X is a functional $p: X \to [0, \infty)$ s.t.

- 1) $\forall x, y \in X$, $p(x+y) \le p(x) + p(y)$;
- 2) $\forall x \in X, \forall \lambda \in \mathbb{R} \text{ (or } \mathbb{C}), \ p(\lambda x) = |\lambda| p(x)$

The collection \mathcal{P} of seminorms introduces a 'locally convex' topology $\tau_{\mathcal{P}}$ generated by

$$V_x(p,n) = \{ y \in X : p(y-x) < 1/n \}$$

for $x \in X$, $p \in \mathcal{P}$, $n \in \mathbb{N}$.

Definition 3.2. The family \mathcal{P} is said to separate points if for any $0 \neq x \in X$, there exists $p \in \mathcal{P}$ s.t. $p(x) \neq 0$.

Therefore (ES) a sequence x_n converges in $\tau_{\mathcal{P}}$ iff for all $p \in \mathcal{P}$, $p(x_n - x) \to 0$ as $n \to \infty$. This topology is not generally metrizable unless \mathcal{P} is countable. In that case a metric is given by

$$d_{\mathcal{P}}(x,y) = \sum_{i=1}^{\infty} \frac{p_i(x-y)}{2^{-i}(1+p_i(x-y))}$$

Definition 3.3. We say that $(X, \tau_{\mathcal{P}})$ is a locally convex topological vector space (LCTVS). If it's complete, then we call it a Frechet space.

Consider the semi-norms given by $p_{\Lambda}(x) = |\Lambda(x)|$.

Definition 3.4. The topology $\tau_{\mathcal{P}}$ induced by $\mathcal{P} = \{p_{\Lambda} : \Lambda \in X'\}$ is called the weak topology τ_w . We say that $x_n \to x$ weakly in X or $x_n \rightharpoonup x$ if $\Lambda(x_n) \to \Lambda(x)$ for all $\Lambda \in X'$.

Definition 3.5. On the dual space X', we can consider the weak-* topology τ_{w^*} induced by $\mathcal{P} = \{p_x(\Lambda) = |\Lambda(x)| : x \in X\}$. Note that $\Lambda_n \to \Lambda$ weak-*, or $\Lambda_n \rightharpoonup^* \Lambda$ if $\Lambda_n(x) \to \Lambda(x)$ for all $x \in X$.

Example 3.6.

1) Consider $L^p(\mathbb{R}, dx)$. $f_n \to f$ weakly in L^p iff

$$\forall g \in L^q, \int_{\mathbb{P}^n} f_n g dx \to \int_{\mathbb{P}^n} f g dx$$
 (†)

Since $L^p = (L^q)'$, $\Lambda_{f_n} \to \Lambda_f$ weak-* (or $f_n \to f$ weak-*) iff (†) holds. For 1 , weak convergence and weak-* convergence coincide. (This is true in any reflexive space.)

2) Consider a probmeas on a metric space D (with Borel σ -algebra). Let $C_b(D)$ denote the Banach space of bounded cts functions on D. Then $\mu(f)$ defines an element $C_b(D)'$. A sequence of probmeas μ_n converges to μ in τ_{w^*} if $\mu_n(f) \to \mu(f)$ for all $f \in C_b(D)$. (i.e. weak convergence of laws)

Recall Arzela-Ascoli. A sufficient condition for equicontinuity is given by Hölder continuity, defined as

$$||f||_{C^{0,\gamma}} = ||f||_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\gamma}}$$

where $0 < \gamma < 1$ and

$$||f||_{C^{m,\gamma}} = \sum_{0 \le |\alpha| \le m} ||D^{\alpha} f||_{\infty} + \max_{|\alpha| = m} \sup_{x \ne y} \frac{|D^{\alpha} f(x) - D^{\alpha} f(y)|}{|x - y|^{\gamma}}$$

So $\{f: ||f||_{C^{0,\gamma}} \leq 1\}$ is compact in C([0,1]) by Arzela-Ascoli.

Theorem 3.7 (Banach-Alaoglu). Let X be a normed space. The unit ball $B_1 = \{\Lambda \in X' : \|\Lambda\|_{X'} \le 1\}$ of X' is compact in weak-* topology

Remark 8. In $(C_b(D))'$ any sequence of probmeas has a weak-* convergent subsequence.

We will prove Banach Alaoglu for X separable.

Lemma 3.8. For a countable dense subset $D = \{x_1, ..., x_n\}$ of X, consider seminorms $\tilde{\mathcal{P}} = \{p_{x_k}(\Lambda) = |\Lambda(x_k)| : k \in \mathbb{N}\}$ with induced topology $\tau_{\tilde{\mathcal{P}}}$. Then $\tau_{w^*} = \tau_{\tilde{\mathcal{P}}}$ coincide as topologies on $B'_1 = \{\Lambda \in X' : \|\Lambda\|_{X'} \leq 1\}$ and are metrized by

$$d_{\tilde{\mathcal{P}}(\Lambda,\Lambda')} = \sum_{k=1}^{\infty} \frac{|\Lambda(x_k) - \Lambda'(x_k)|}{2^k (1 + |\Lambda(x_k) + \Lambda'(x_k)|)}$$

Proof. The open sets for $\tau_{\tilde{\mathcal{P}}}$ are generated by $V(x_k,m) = \{\Lambda : |\Lambda(x_k)| < 1/m\}$. To prove that the two topologies are equivalent, it suffices to show that V(x,n) contain some $V(x_k,m)$ for all $x \in X, n \in \mathbb{N}$. Suppose $x \in X \setminus D$ and pick $x_k \in D$ s.t. $||x - x_k|| < \varepsilon$. For $\Lambda \in V(x_k,m)$ we have $|\Lambda(x)| \le |\Lambda(x_k - x)| + |\Lambda(x_k)| \le ||\Lambda||_{X'}\varepsilon + 1/m < n$ when ε is sufficiently small and m sufficiently large, so $V(x_k,m) \subseteq V(x,n)$.

If
$$\Lambda_j(x_k) \stackrel{j \to \infty}{\longrightarrow} \Lambda(x_k)$$
 for all k then $d_{\tilde{\mathcal{P}}}(\Lambda_j, \Lambda) \to 0$ by DCT applied to counting measure on \mathbb{N} . \square

Theorem 3.9. Let $\Lambda_j \in B'_1$. Then $\exists \Lambda \in B'_1$ s.t. $\Lambda_{j_k} \to \Lambda$ weak-*.

Proof. Let D be a countable dense subset of X. Since $|\Lambda_j(x_k)| \leq ||x_k|| < \infty$. Diagonalization argument. Find convergent subsequences $\Lambda_{i,j}$ Find a Λ as the limit of $\Lambda_{j,j}$. Need to show linearity and continuity. Note that Λ is unif cts on D. [If $x,y \in D$ with $||x-y|| < \varepsilon/2$, then for all j sufficiently large, $|\Lambda_{j,j}(x) - \Lambda(x)|, |\Lambda(y) - \Lambda_{j,j}(y)| < \varepsilon/4$] Apply triangle inequality to $|\Lambda(x) - \Lambda(y)|$. Note that $\Lambda_{j,j}$ is uniformly Lipschitz. By uniform continuity, we can extend Λ to a unif cts function on X.

To show linearity, let $x, y \in X$, z = x + ay for $a \in \mathbb{R}$ (or \mathbb{C}) and pick $x', y', z' \in D$ s.t. $||x - x'|| + |a|||y - y;|| + ||z - z'|| < \delta$.

Apply a big triangle inequality.

$$|\Lambda(z) - \Lambda(x) - a\Lambda(y)| \le |\Lambda(z) - \Lambda(z')| + |\Lambda(x) - \Lambda(x')| + |a||\Lambda(y) - \Lambda(y')|$$

 $< +|\Lambda(z') - \Lambda_{i,i}(z')| + \dots$

each term is small either by unif continuity or unif convergence or linearity of Λ on D.

Need to show that $\|\Lambda\| \le 1$ ($|\Lambda(x)| \le |\Lambda(x-x')| + |\Lambda(x')|$) and that the convergence holds on X. \square

4 The Hahn-Banach theorem and its consequences

Definition 4.1. A functional $p: X \to \mathbb{R}$ on a real vector space is called sub-linear if

- (i) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$
- (ii) p(tx) = tp(x) for all $t \ge 0, x \in X$.

Lemma 4.2 (Bounded extension). Let X be a real vector space and $p: X \to \mathbb{R}$ sub-linear Let $M \subsetneq X$ be a vector subspace, and for $x \in X \setminus M$ define $\tilde{M} = \operatorname{span}(M, x) = \{M + cx : c \in \mathbb{R}\}$. If $l: M \to \mathbb{R}$ is a linear form s.t. $l(x) \leq p(x)$ for all $x \in M$, then there exists $\tilde{l}: \tilde{M} \to \mathbb{R}$ linear s.t. $\tilde{l}_M = l$ and $\tilde{l}(x) \leq p(x)$ for all $x \in \tilde{M}$.

Proof. Let $y_1, y_2 \in M$. $l(y_1) + l(y_2) = l(y_1 + y_2) \le p(y_1 + y_2) \le p(y_1 - x) + p(y_2 + x)$ for all $x \in X \setminus M$. Rearrange, $l(y_1) - p(y_1 - x) \le l(y_2) - p(y_2 + x)$. Take sup/inf,

$$\sup\{l(y) - p(y - x) : y \in M\} \le a \le \inf\{p(y + x) - l(y) : y \in M\} \tag{*}$$

for some $a \in \mathbb{R}$. If $z \in \tilde{M}$, then it has a unique decomposition $z = y + \lambda x$ for some $\lambda \in \mathbb{R}$. Define $\tilde{l}(z) = \tilde{l}(y + \lambda x) = l(y) + \lambda a$. To see $\tilde{l} \leq p$ on \tilde{M} , for $\lambda > 0$, write $\tilde{l}(y + \lambda x) = \lambda (l(y/\lambda) + a) \overset{(*)}{\leq} \lambda (l(\frac{y}{\lambda}) + p(\frac{y}{\lambda} + x) - l(\frac{y}{\lambda})) = p(y + \lambda x)$. For $\lambda < 0$, let $\mu = -\lambda$ and $\tilde{l}(y + \lambda x) = \mu (l(\frac{y}{\mu} - a)) \leq \mu (l(\frac{y}{\mu}) - l(\frac{y}{\mu}) + p(\frac{y}{\mu} - x))$. \square

To extend l to all of X (for X separable), we can apply the extension lemma inductively to $M_n = \text{span}(M; x_1, ..., x_n)$, where $(x_n)_{n \in \mathbb{N}}$ is a countable dense subset of X.

In general, consider $S = \{(N, \tilde{l}) : M \subseteq N \subseteq X \text{ vec.sp.}, \ \tilde{l}|_{M} = l, \ \tilde{l} \leq p \text{ on } N\}$. Apply Zorn's lemma.

Theorem 4.3 (Hahn-Banach). Let X be a real vector space and $p: X \to \mathbb{R}$ a sublinear functional. For $M \subseteq X$ vec. subspace, let $l: M \to \mathbb{R}$ be a linear functional s.t. $l(x) \le p(x)$ for all $x \in M$. Then there exists an extension $\tilde{l}: X \to \mathbb{R}$ (linear) s.t. $\tilde{l}(x) \le p(x)$ for all $x \in X$.

Remark 9. Extensions need not be unique. If X is non-separable, the result depends on Axiom of Choice.

Corollary 4.4 (Norming Functional). Let X be a normed linear space. For all $x \in X$, there exists a linear functional $\Lambda = \Lambda_x \in X'$ s.t. $\|\Lambda\| = 1$ and $|\Lambda(x)| = \|x\|_X$. In particular, if $\Lambda(x - y) = 0$ for all $\Lambda \in X'$, then x = y.

$$\subset$$
] - : \langle (Owen's (infinitely handsome) signature)

Proof. For $x \in X$ define the vector subspace $M = \{cx : c \in \mathbb{R}\}$ and consider the linear functional $l(cx) = c\|x\|_X$, so $|l(y)| \le p(y) = \|y\|_X$. By Hahn-Banach, there exists $\Lambda = \Lambda_x : X \to \mathbb{R}$ s.t. $|\Lambda_x(y)| \le \|y\|_X$, so $\Lambda \in X'$ and $\|\Lambda\| \le 1$. Note that $\|\Lambda\|_{X'} \ge \sup_{y \in M \cap B_X} |l(y)| \ge \|x\|_X$

Corollary 4.5. The canonical injection of $i: X \hookrightarrow X''$ given by $x \mapsto (\Lambda \to \Lambda(x))$ is an isometric embedding.

Proof. Consider
$$||i(x)||_{X''} = \sup_{\|\Lambda\| \le 1} |\Lambda(x)| \le ||x||_X$$
. By taking a norming functional, $||i(x)||_{X''} \ge ||\Lambda_x(x)|| = ||x||$.

If X is reflexive, then X is isometrically isomorphic to (X')' which is complete. (i.e., reflexive normed lienar space is Banach.) If X is not reflexive, then X'' provides (up to iso) the completion of X for $\|\cdot\|_X$.

In particular, if X is reflexive ,then the weak topology coincides with the weak-* topology on (X')', so Banach-Alaoglu the unit ball B_X is compact in τ_w .

Theorem 4.6 (Hyperplane Separation). Let A, B be non-empty disjoint convex sets in a Banach space X over \mathbb{R} .

- (i) If A is open, then $\exists \Lambda \in X'$ and $\gamma \in \mathbb{R}$ s.t. $\Lambda(a) < \gamma \leq \Lambda(b)$ for all $a \in A$ and $b \in B$.
- (ii) If A is compact and B is closed, then $\exists \Lambda \in X'$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ s.t. $\Lambda(a) < \gamma_1 < \gamma_2 < \Lambda(b)$ for all $a \in A$. $b \in B$.

Proof. (i): Pick $a_0 \in A$, $b_0 \in B$ and let $x_0 = b_0 - a_0$. Define $C = A - B + x_0$. C is convex, $0 \in C$, $x_0 \notin C$. C is open. Consider the Minkowski functional defined as

$$p_C(x) = \inf\{t > 0 : x/t \in C\}$$

Can show (ES) that p_C is

- \bullet sublinear on X
- there exists k > 0 s.t. $p_C(x) \le k||x||$
- $p_C(x) < 1$ for $x \in C$ and $p_C(x) \ge 1$ for $x \notin C$.

Take

$$M = \{tx_0 : t \in \mathbb{R}\}$$

and consider the linear functional $l: M \to \mathbb{R}$, $tx_0 = t$. Then l is dominated by p_C since

$$l(tx_0) = t \le tp_C(x_0) = p(tx_0) = p_C(tx_0)$$

for t > 0 and $l(tx_0) = t \le 0 \le p_C(tx_0)$. By Hahn-Banach, there exists $\Lambda : X \to \mathbb{R}$ s.t. $-k||x|| \le -p_C(x) \le \Lambda(x) \le p_C(x) \le k||x||$ for all $x \in X$, so $\Lambda \in X'$. Pick $a \in A$, $b \in B$. Note that

$$\Lambda(a) - \Lambda(b) + \Lambda(x_0) = \Lambda(a - b + x_0) \le p_C(a - b + x_0) < 1$$

So $\Lambda(a) < \sup \Lambda(A) \le \Lambda(b)$.

(2): $\Lambda(A)$ is compact in \mathbb{R} and $d = ||A - B||_X$. Then consider $\tilde{A}_d = A + B_{d/2}$, where $B_{d/2} = \{y : ||y|| < d/2 \text{ still disjoint from } B$. Apply (1).

5 Generalized Functions and Distributions

Consider a topological vec. space $X \subseteq \bigcap_{q \ge 1} L^q(\Omega, dx)$, where Ω is an open subset of \mathbb{R}^n . Suppose X contains $C_c^{\infty}(\Omega)$. Let $f \in L^q$, then obtain a linear functional on X given by $\Lambda_f(g) = \int_{\Omega} f g dx$, $g \in X$. If the embedding $X \hookrightarrow L^q$ is cts, then $\Lambda_f \in X'$. Note that $g = \phi_{\epsilon}$ is contained in X, mollification implies $\Lambda_f = 0 \implies f = 0$ a.e.. So we can identify Λ_f with f and study the weak-* topology of X' on L^p .

Define seminorms on $C^{\infty}(\Omega)$, $p_N(\phi) = \max_{0 \le |\alpha| \le n} \sup_{x \in K_N} |D^{\alpha}\phi(x)|$, where $K_i \subseteq K_{i+1}$ and $\bigcup_i K_i = \Omega$. We define the Frechet space $\mathcal{E}(\Omega) = (C^{\infty}(\Omega), \tau_{\mathcal{P}})$, where $\mathcal{P} = \{p_N : N \in \mathbb{N}\}$. [Note that $\mathcal{E}(\Omega)$ may contain non-integrable functions.]

Theorem 5.1. There exists a topology τ on $C_c^{\infty}(\Omega)$ s.t.

- (1) vector space operations are cts
- (2) a sequence $\phi_j \stackrel{j \to \infty}{\to} 0$ iff $\exists K \subseteq \Omega$ compact s.t. $\operatorname{supp}(\phi_j) \subseteq K$ for all j and $D^{\alpha}\phi_j \to 0$ unif. on K for all $0 \le |\alpha| < \infty$.
- (3) If $T: C_c^{\infty}(\Omega) \to \mathbb{R}$ (or \mathbb{C}) is linear, then it's cts iff $T(\phi_j) \to 0$ for all $\phi_j \to 0$ in τ . proof omitted.

Definition 5.2. We define $\mathcal{D} = \mathcal{D}(\Omega) = (C_c^{\infty}(\Omega), \tau)$, the space of test functions.

For each $\phi \in C_c^{\infty}(\Omega)$, define $e^{-j}\phi(\cdot/j)$, then $e^{-j}\phi(\cdot/j) \to 0$ in D, but $j^{-2025}\phi(\cdot/j)$ does not converge to 0 in D.

Definition 5.3. Call $\phi \in C^{\infty}(\mathbb{R}^n)$ rapidly decreasing if $\sup_{x \in \mathbb{R}^n} (1 + |x|)^N |D^{\alpha}\phi(x)| < \infty$ for all $0 \le |\alpha| < \infty$ and all $N \in \mathbb{N}$.

[Note that $e^{-|x|^2}$ is rapidly decreasing but $(1+|x|)^{-2025}$ is not.] Define seminorms $\tilde{\mathcal{P}}=\{\tilde{p}_N:N\in\mathbb{N}\}$ with

$$\tilde{p}_N = \max_{0 \le |\alpha| \le N} \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |D^{\alpha} \phi(x)|$$

Define Frechet space $\mathcal{S}(\mathbb{R}^n) = (\{\phi \text{ rapidly decreasing}\}, \tau_{\tilde{\mathcal{P}}})$. This is metrizable since $\tilde{\mathcal{P}}$ is countable. This is called the Schwartz class.

Clearly $\mathcal{D}(\Omega) \subsetneq \mathcal{E}(\Omega)$, $D(\mathbb{R}^n) \subsetneq \mathcal{S}(\mathbb{R}^n) \subsetneq \mathcal{E}(\mathbb{R}^n)$ with continuous embedding (ES). We can now define $\mathcal{D}'(\Omega) = \{T : \mathcal{D}(\Omega) \to \mathbb{R} \text{ (or } \mathbb{C}) \text{ linear and cts} \}$, the space of Schwartz distributions. We also define $\mathcal{E}(\Omega) = \{T : \mathcal{E}(\Omega) \to \mathbb{R} \text{ (or } \mathbb{C}) \text{ linear and cts} \}$ the space of compactly supported Schwartz distributions. Finally for $\Omega = \mathbb{R}^n$ we define $\mathcal{S}(\mathbb{R}^n) = \{T : \mathcal{S}(\mathbb{R}^n) \to \mathbb{R} \text{ (or } \mathbb{C}) \text{ linear and cts} \}$ the space of tempered distributions. These spaces are equipped with their weak-* topologies of pointwise convergence on $\mathcal{D}, \mathcal{E}, \mathcal{S}$ resp. Have cts embeddings $\mathcal{E}' \subset \mathcal{D}'$, and $\mathcal{E}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$.

Example 5.4. Consider $\delta_x(\phi) = \phi(x)$, then if $\phi_j \to 0$ in $\mathcal{D}, \mathcal{E}, \mathcal{S}$, then $\delta_x(\phi_j) = \phi_j(x) \to 0$ as $j \to \infty$, so $\delta_x \in \mathcal{E}', \mathcal{D}', \mathcal{S}'$.

$$O \frown O$$
 (Owen's Signature)

Let $f \in L^1_{loc}(\Omega)$. Then $T_f(\phi) = \int_{\Omega} f \phi dx$, $\phi \in \mathcal{D}(\Omega)$. Have $T_f \in \mathcal{D}'(\Omega)$ since for $\phi_j \to 0$ in $\mathcal{D}(\Omega)$ we have $T_f \phi_j \to 0$ by DCT with dominating function $\sup_{j \in \mathbb{N}} \|\phi_j\|_{\infty} 1_K |f| \in L^1$ (K compact). Also, $T_f = 0$ in $\mathcal{D}'(\Omega)$ still implies f = 0 a.e. by applying the mollification theorem (ES) to $f1_{B(x)}$ where B(x) is a ball in Ω containing $x \in \Omega$, so $L^1_{loc} \subseteq \mathcal{D}'$

ball in Ω containing $x \in \Omega$, so $L^1_{\text{loc}} \subseteq \mathcal{D}'$ If $\varphi_{\varepsilon} = \varepsilon^{-n} \varphi(\cdot/\varepsilon)$, $\varphi \geq 0$, smooth, compactly supported, normalized, then for $g \in \mathcal{D}(\mathbb{R}^n)$, $T_{\varphi_{\varepsilon}}(g) = g * \varphi_{\varepsilon}(0) \to g(0) = \delta_0(g)$ as $\varepsilon \to 0$. So $T_{\varphi_{\varepsilon}} \overset{\varepsilon \to 0}{\to} \delta_0$ in $\mathcal{D}'(\mathbb{R}^n)$.

5.1 Generalized (Distributional) Derivatives in $\mathcal{D}'(\Omega)$)

Let $f \in C^1(\Omega)$, then $D_i f \in L^1_{loc}$. Consider $T_{D_i f}$. Let $\varphi \in \mathcal{D}(\Omega)$

$$\int (D_i f) \varphi dx \stackrel{ibp}{=} - \int f D_i \varphi dx = -T_f(D_i \varphi)$$

So we define (for all multi-index α) the generalized derivative of any $T \in \mathcal{D}'(\Omega)$ as

$$(D^{\alpha}T)(\varphi) = (-1)^{|\alpha|}T(D^{\alpha}\varphi)$$

so $D^{\alpha}T \in \mathcal{D}'(\Omega)$. If $T = T_f$ and $D^{\alpha}T = T_g$ for some $f, g \in L^1_{loc}$, then say $g = D^{\alpha}_w f$ the weak partial derivative of f.

Example 5.5. Let $f(x) = x1_{\{x>0\}}$. Consider T_f .

$$DT_f(\varphi) = -T_f(\varphi') = -\int_0^\infty x \varphi'(x) dx \stackrel{ibp}{=} \int_0^\infty \varphi(x) dx = \int_{\mathbb{R}} H \varphi dx$$

where H is the Heaviside function, so H is the weak derivative of f.

Consider the second derivative.

$$D^{2}T_{f}(\varphi) = DT_{H}(\varphi) = -T_{H}(\varphi') = -\int_{0}^{\infty} \varphi' = \varphi(0) = \delta_{0}(\varphi)$$

 δ_0 cannot be represented by locally integrable functions.

Have $D^3T_f(\varphi) = -\delta_0(\varphi') = -\varphi'(0)$ which is a Schwartz distribution but not a measure.

5.2 Multiplication of Distributions with Smooth Functions

If $f \in L^1_{loc}$ and $a \in C^{\infty}(\Omega)$, the $T_{af}(\varphi) = \int_{\Omega} af\varphi = T_f(a\varphi)$. Note that $a\varphi \in \mathcal{D}$ if $\varphi \in \mathcal{D}$, so we define

$$(aT)(\varphi) = T(a\varphi)$$

for $T \in \mathcal{D}'(\Omega)$ and $a \in C^{\infty}(\Omega)$.

5.3 Compactly Supported Distributions

Proposition 5.6. A linear map $T : \mathcal{E}(\Omega) \to \mathbb{R}$ (or \mathbb{C}) is cts iff there exists $K \subseteq \Omega$ compact, $N \in \mathbb{N}$, and C > 0 s.t. for all $\varphi \in \mathcal{E}(\Omega)$

$$|T(\varphi)| \leq C \max_{0 \leq |\alpha| \leq N} \sup_{x \in K} |D^{\alpha} \varphi(x)| \tag{\dagger}$$

Proof. Suppose (†) holds and $\phi_j \to 0$ in $\mathcal{E}(\Omega)$. By defin of $\tau_{\mathcal{P}}$, for j large enough, $K \subseteq K_j$ and RHS of (†) with $\phi = \phi_j$ converges to 0, so $T(\phi_j) \to 0$, so $T \in \mathcal{E}'(\Omega)$.

Conversely, assume T is cts but (\dagger) fails. If $K_j \subseteq K_{j+1}$ is any exhaustion of compact sets of Ω , we obtain a sequence $\varphi_j \in \mathcal{E}'(\Omega)$ s.t.

$$|T(\varphi_j)| \ge j \max_{0 \le |\alpha| \le j} \sup_{x \in K_j} |D^{\alpha}(\varphi_j)|$$

Define $\psi_j = \frac{\varphi_j}{|T(\varphi_j)|}$. Have

$$|D^{\beta}\psi_j(x)| \le \frac{1}{j} \frac{|D^{\beta}\varphi_j(x)|}{\max_{0 \le |\alpha| \le j} \sup_{x \in K_i} |D^{\alpha}\varphi_j(x)|} \stackrel{e.v.}{\le} \frac{1}{j} \to 0$$

So $\psi_j \to 0$ in $\mathcal{E}(\Omega)$ but $T(\psi_j) = 1$ for all j. Contradiction.

Definition 5.7. Say $T \in \mathcal{D}'(\Omega)$ has support in a closed set $K \subseteq \Omega$ if $T(\varphi) = 0$ whenever $\varphi \in C_c^{\infty}(\Omega \setminus K) \subseteq C_c^{\infty}(\Omega)$.

The last proposition implies that $T \in \mathcal{E}'(\Omega)$ is supported in some compact subset of Ω . If $f \in L^1_{loc}$ s.t. f = 0 outside of a compact set, then T_f is compactly supported. If $T \in \mathcal{D}'(\Omega)$ is compactly supported, then so is $D^{\alpha}T$ for any α .

Proposition 5.8. Any $T \in \mathcal{E}'(\Omega)$ restricts to $T \in \mathcal{D}'(\Omega)$ of compact support. Any $T \in \mathcal{D}'(\Omega)$ that is compactly supported extends to $\tilde{T} \in \mathcal{E}'(\Omega)$.

Proof. The first claim follows from (†) in the preceding proposition. Conversely, if K is compact and supports T_1 . Take $\xi \in C_c^{\infty}(\Omega)$ s.t. $\xi = 1$ on K and define $\tilde{T}(\varphi) = T(\xi\varphi), \ \varphi \in \mathcal{E}(\Omega)$, which define an element of $\mathcal{E}'(\Omega)$.

5.4 Convolutions of Distributions

Notation: Recall the shift operator $\tau_x g = g(\cdot - x)$. Let $\overset{\vee}{g} = g(-\cdot)$, and $\overset{\vee}{\tau_x} g = g(x - \cdot)$. In this notation $f * g(x) = T_f(\overset{\vee}{\tau_x} g)$. If $g \in C_c^{\infty}(\mathbb{R}^n)$, $\overset{\vee}{\tau_x} g \in C_c^{\infty}(\mathbb{R}^n)$, and we can define for $T \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, the convolution

$$x \mapsto T * \varphi(x) = T[\tau_x^{\vee} \varphi]$$

Theorem 5.9. Let $T \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, α any multi-index. Then $T * \varphi \in C^{\infty}(\mathbb{R}^n)$ and $D^{\alpha}(T * \varphi) = 0$ $(D^{\alpha}T) * \varphi = T * (D^{\alpha}\varphi).$

Proof. Take $e_i \in \mathbb{R}^n$ (basis vector), and let $h \to 0$. Write

$$\frac{1}{h}[T * \varphi(x + he_i) - T * \varphi(x)] = T \left[\frac{\varphi(x + he_i - \cdot) - \varphi(x - \cdot)}{h} \right]$$

$$\stackrel{ES2}{\longrightarrow} D_i(\varphi(x - \cdot))$$

in $\mathcal{D}(\mathbb{R}^n)$ and since T is cts in this topology, RHS $\overset{h\to 0}{\to} T[D_i\varphi(x-\cdot)] = T(\tau_x\overset{\vee}{D_i\varphi}) = T*D_i\varphi$. In particular $T*\varphi$ is cts for any $\varphi\in\mathcal{D}(\mathbb{R}^n)$ and is $T*D_i\varphi$, and by iterating we deduce that $T*\varphi\in C^\infty(\mathbb{R}^n)$. In particular, $D^{\alpha}(T * \varphi) = T * (D^{\alpha}\varphi).$

Need to prove the first equality. Note

$$D^{\alpha}(\tau_x^{\vee}\varphi) = D^{\alpha}\varphi(x-\cdot) = (-1)^{|\alpha|}(D^{\alpha}\varphi)(x-\cdot) = (-1)^{|\alpha|}\tau_x \overset{\vee}{D^{\alpha}}\varphi$$

Thus
$$(D^{\alpha}) * \varphi(x) = D^{\alpha}T(\tau_x^{\vee}\varphi) = (-1)^{|\alpha|}T(D^{\alpha}(\tau_x^{\vee}\varphi)) = \tau(\tau_x\overset{\vee}{D^{\alpha}}\varphi) = T*(D^{\alpha}\varphi).$$

Notice if $T \in \mathcal{E}'(\Omega)$, supported in K cpt and K_x the shifted support of $\tau_x^{\vee} \varphi = \varphi(x - \cdot), \ \varphi \in C_c^{\infty}(\mathbb{R}^n)$. Thus for |x| large enough, $K \cap K_x = \emptyset$ and $T_*\varphi \in \mathcal{D}(\mathbb{R}^n)$.

Definition 5.10. Let $T(1) \in \mathcal{D}'(\mathbb{R}^n)$, $T(1) \in \mathcal{E}'(\mathbb{R}^n)$. Then define their convolution by the action

$$(T_1 * T_2) * \varphi(x) = T_1 * (T_2 * \varphi)(x)$$

for $\varphi \in \mathcal{D}(\mathbb{R}^n)$.

Remark 10. Note that $T_1 * T_2$ is assigned on $\mathcal{D}(\mathbb{R}^n)$ as we can consider $x = 0, \varphi = \phi(-\cdot)$ so that $T_1 * T_2(\varphi)(0) = T_1 * T_2(\phi) \text{ for } \phi \in \mathcal{D}(\mathbb{R}^n).$

Remark 11. Note that δ_0 has cpt support and $\delta_0*\varphi = \delta_0[\varphi(x-\cdot)] = \varphi(x)$. Therefore for any $T_1 \in \mathcal{D}'(\mathbb{R}^n)$, $(T_1 * \delta_0) * \varphi = T_1 * (\delta_0 * \varphi) = T_1 * \varphi$, so $\delta_0 * [\cdot]$ acts as a right identity on all of $\mathcal{D}'(\mathbb{R}^n)$.

Theorem 5.11. Let $T_1 \in \mathcal{D}'(\mathbb{R}^n), T_2 \in \mathcal{E}'(\mathbb{R}^n), \alpha$ any multi-index. Then

$$D^{\alpha}(T_1 * T_2) = (D^{\alpha}T_1) * T_2 = T_1 * (D^{\alpha}T_2)$$

Proof. Using the previous theorem and the definitions, for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we have $D^{\alpha}(T_1 * T_2) \stackrel{\text{thm}}{=}$ $(T_1*T_2)*D^{\alpha}\varphi \stackrel{\mathrm{def}}{=} T_1*(T_2*D^{\alpha}\varphi) \stackrel{\mathrm{thm}}{=} T_1*(D^{\alpha}T_2*\varphi) \stackrel{\mathrm{def}}{=} (T_1*D^{\alpha}T_2)*\varphi.$

Fundamental Solutions of Linear PDEs

Consider a partial differential operator $L = \sum_{|\alpha| \leq k} a_{\alpha} D^{\alpha}$, $a_{\alpha} \in C^{\infty}(\mathbb{R}^n)$, $k \in \mathbb{N}$. Consider $Lu = u_0$ for $u, u_0 \in \mathcal{D}'(\mathbb{R}^n)$. A weak solution u is one s.t. $(Lu)(\varphi) = u_0(\varphi)$ for all $\varphi \in \mathcal{D}$. An element $\mathcal{G} \in \mathcal{D}'(\mathbb{R}^n)$ is called a fundamental solution for L if $L\mathcal{G} = \delta_0$ in $\mathcal{D}'(\mathbb{R}^n)$. If $\mathcal{G} = T_q$ for some $g \in L^1_{loc}(\mathbb{R}^n)$, then we call g the Green kernel of \mathcal{G} .

Theorem 5.12. Suppose L has constant coefficients $a_{\alpha} \in \mathbb{R}$ (or \mathbb{C}), and $\mathcal{G} \in \mathcal{D}'(\mathbb{R}^n)$ is its fundamental solution. Then, if $u_0 \in \mathcal{E}'(\mathbb{R}^n)$, a solution $Lu = u_0$ is given by

$$u = \mathcal{G} * u_0$$

Remark 12. If $u_0 \in \mathcal{D}$, then $\mathcal{G} * u_0 \in C^{\infty}(\mathbb{R}^n)$ and the equation $Lu = u_0$ holds pointwise on \mathbb{R}^n .

Proof. By linearity and the previous theorem

$$Lu = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha}(\mathcal{G} * u_0) = \sum_{|\alpha| \le k} a_{\alpha} (D^{\alpha} \mathcal{G} * u_0) = LG * u_0 = \delta_0 * u_0 = u_0$$

Note that the last equality follows from the fact that we can swap δ_0 and u_0 when u_0 is compactly supported.

5.6 Fourier Transforms of Distributions

Recall Fourier transform

$$\hat{f}(u) = \int_{\mathbb{R}^n} e^{-ix \cdot u} f(x) dx$$

for $f \in L^1$. Since $\hat{f} \in L^1_{loc}(\mathbb{R}^n)$, we can consider the operator

$$T_{\hat{f}}(\varphi) = \int_{\mathbb{R}^n} \hat{f}(u)\varphi(u)du = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)e^{-ix\cdot u}\varphi(u)dudx = T_f(\hat{\varphi})$$

for $\varphi \in \mathcal{D}$. Note that we used Fubini. Since $\hat{\varphi}$ is not necessarily in \mathcal{D} , this defin doesn't extend to \mathcal{D}' , and we choose to work with $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ instead.

Recall Riemann Lebesgue lemma from PM.

Lemma 5.13. Let $f \in L^1(\mathbb{R}^n)$, then $\hat{f} \in C_0(\mathbb{R}^n)$.

Proof. For any $u_j \to u$ in \mathbb{R}^n , we have $e^{-ix \cdot u_j} f(x) \to e^{-ix \cdot u} f(x)$, and this gives a dominating function. By DCT, $\hat{f}(u_j) \to \hat{f}(u)$, so \hat{f} is cts. Also have $\|\hat{f}\|_{\infty} \leq \int_{\mathbb{R}^n} |f(x)| dx = \|f\|_{L^1}$. For any $f \in L^1$, take a sequence $f_k \in C_c^{\infty}(\mathbb{R}^n)$ s.t. $f_n \to f$ in L^1 , so that $\|\hat{f}_k - \hat{f}\|_{\infty} \leq \|f_k - f\|_{L^1} \to 0$ so $\hat{f}_k \to \hat{f}$ unif. on \mathbb{R}^n , and $\hat{f}_k \in C_0(\mathbb{R}^n)$. Now have $|u_j|\hat{f}_l(u)| = |D_j\hat{f}_k(u)| \leq \|D_jf\|_{L^1} < \infty$. By completeness of $C_0(\mathbb{R}^n)$, $\hat{f} \in C_0(\mathbb{R}^n)$

Remark 13. Note that Fourier transform does not map L^1 onto $C_0(\mathbb{R}^n)$.

(Owen's signature)

Lemma 5.14. Let $f \in L^1(\mathbb{R}^n)$.

- (i) If $f_{\lambda} = \lambda^{-n} f(\cdot/\lambda)$, $\lambda > 0$, then $\hat{f}_{\lambda} = \hat{f}(\lambda u)$, $u \in \mathbb{R}^n$
- (ii) $\mathcal{F}[\tau_x f](u) = e^{-ix \cdot u} \hat{f}(u), \, \mathcal{F}[e^{i\langle y, \cdot \rangle} f] = \tau_u \hat{f}.$
- (iii) If $g \in L^1$, then $f * g \in L^1$ and $\mathcal{F}[f * g] = \hat{f} \cdot \hat{g}$

Proof. Fubini and substitution.

Theorem 5.15.

- (i) Let $f \in C^1(\mathbb{R}^n)$, $f, D_j f \in L^1$ for j = 1, ..., n. Then $\mathcal{F}[D_j f](u) = iu_j \hat{f}(u)$ for $u \in \mathbb{R}^n$.
- (ii) If $f \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} (1+|x|)|f(x)|dx < \infty$, then for any j = 1, ..., n, $u \in \mathbb{R}^n$, have $D_j \hat{f}(u) = -i\mathcal{F}[x_j \hat{f}(x)]$. In particular, $\hat{f} \in C^1(\mathbb{R}^n)$

Proof. (i) For any $\varepsilon > 0$, we can pick $f_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ s.t. $||f_{\varepsilon} - f||_{L^1} + ||D_j f_{\varepsilon} - D_j f||_{L^1} < \varepsilon$. [First approximate by $\bar{f} = f\xi$, with $\xi \in C_c^{\infty}(\mathbb{R}^n)$ s.t. $\xi = 1$ on D(0, M). Approximate \bar{f} by $\phi_{\varepsilon} * \bar{f} \to \bar{f}$ in L^1 . Also have $D_j(\phi_{\varepsilon} * f) = \phi_{\varepsilon} * (D_j \bar{f}) \to D_j \bar{f}$ as $\varepsilon \to 0$.] For such f_{ε} we see

$$\mathcal{F}[D_j f_{\varepsilon}](u) = \int_{\mathbb{R}^n} e^{ix \cdot u} D_j f_{\varepsilon}(x) dx \stackrel{ibp}{=} - \int_{\mathbb{R}^n} i u_j x^{-ix \cdot u} f_{\varepsilon}(x) dx$$

So

$$\begin{aligned} |\mathcal{F}[D_{j}f](u) - iu_{j}\hat{f}(u)| &\leq |\mathcal{F}[D_{j}\hat{f}](u) - \mathcal{F}[D_{j}f_{\varepsilon}](u)| + |iu_{j}(\hat{f}_{\varepsilon}(u) - f(u))| \\ &\leq ||D_{j}f - D_{j}f_{\varepsilon}|| + |u_{j}|||f_{\varepsilon} - f||_{L^{1}} \\ &\leq (1 + |u_{j}|)\varepsilon \end{aligned}$$

(ii)
$$\frac{1}{h}(\hat{f}(u+he_j) - \hat{f}(u)) = \int_{\mathbb{R}^n} \frac{1}{h} (e^{-ix \cdot (u+he_j)} - e^{-ix \cdot u}) f(x) dx$$

$$= \int_{\mathbb{R}^n} e^{-ix \cdot u} (\frac{e^{-ix \cdot (he_j)} - 1}{h}) f(x) dx \xrightarrow{\text{DCT}} -i \int_{\mathbb{R}^n} e^{-ix \cdot u} x_j f(x) dx$$

Dominating function $|x_i|$, which is |f(x)|dx-integrable by assumption.

Recall from PM.

Theorem 5.16 (Fourier Inversion). Let $f \in L^1$ and $\hat{f} \in L^1$ Then $f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot u} \hat{f}(u) dx = \mathcal{F}^{-1}[\hat{f}](x)$ a.e.

Note that for the unique cts representative of f, the formula holds everywhere.

Note that $\mathcal{F}^{-1}[\mathcal{F}\varphi] = \frac{1}{(2\pi)^n} \mathcal{F}[\mathcal{F}\varphi](-\cdot)$, so \mathcal{F}^{-1} is a Fourier transform, and $\mathcal{F}^2\varphi = (2\pi)^n \overset{\vee}{\varphi}$.

Theorem 5.17. \mathcal{F} is a linear automorphism of $\mathcal{S}(\mathbb{R}^n)$.

Proof. Can check $S(\mathbb{R}^n) \subseteq L^1(\mathbb{R}^n)$. If $f \in L^1$, then $\int |f| \leq (\sup_{x \in \mathbb{R}^n} (1+|x|)^{n+1} |f(x)|) \int_{\mathbb{R}^n} \frac{dx}{(1+|x|)^{n+1}} < \infty$. For multi-indices α, β ,

$$|u^{\alpha}||D^{\beta}\hat{f}(u)| = |\mathcal{F}[D^{\alpha}(x^{\beta}f)]|(u) \stackrel{\text{RL}}{\leq} ||D^{\alpha}(x^{\beta}f)||_{L^{1}} \leq p_{N}(f)$$

where $p_N(f)$ is an expression of the form in the previous ineq. If $\phi_j \to 0$ in \mathcal{S} , have $p_N(\hat{\phi}_j) \to 0$ and $\mathcal{F}: \mathcal{S} \to \mathcal{S}$ is cts. Moreover, if $\mathcal{F}[\phi] = 0$ for $\phi \in \mathcal{S} \subseteq L^1$, then by the Fourier inversion formula, $\phi = \mathcal{F}^{-1}(0) = 0$, so F is injective. For any $\phi \in \mathcal{S}(\mathbb{R}^n)$, have $\mathcal{F}^{-1}\mathcal{F}\phi = \frac{1}{(2\pi)^n}\mathcal{F}^2\phi$, which is the fourier transform of some function, so also surjective.

Definition 5.18. For $T \in \mathcal{S}'(\mathbb{R}^n)$ we define its distributional Fourier transform $\hat{T}(\phi) = T(\hat{\phi})$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$

Remark 14. Clearly by the previous theorem, $\hat{T} \in \mathcal{S}'(\mathbb{R}^n)$. If $f \in L^1$, then $T_{\hat{f}}(\phi) = \int_{\mathbb{R}^n} \hat{f} \phi dx \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}^n} f \hat{\phi} = T_f(\hat{\phi})$.

Definition 5.19. Call ϕ slowly increasing if $\sup_{x \in \mathbb{R}^n} (1+|x|)^{-N} |\phi(x)| < \infty$ for some N.

Then $T_{\phi} \in \mathcal{S}'(\mathbb{R}^n)$. Even if \hat{T}_{ϕ} is given by T_g for some $g \in L^1_{loc}$, can't conclude $\hat{\phi}$ is pointwise defined. If $T_j, T \in \mathcal{S}'(\mathbb{R}^n)$ and $T_j \to T$ weak-* in $\mathcal{S}'(\mathbb{R}^n)$, then $\hat{T}_j(\phi) = T_j(\hat{\phi}) \to T(\hat{\phi}) = \hat{T}(\phi)$, so $\mathcal{F} : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ is sequentially continuous. One shows further that $\hat{T} = 0 \Longrightarrow T = 0$, so \mathcal{F} is inj. Define $\mathcal{F}^{-1}T$ via $\mathcal{F}^{-1}T(\phi) = T(\mathcal{F}^{-1}\phi)$ for all ϕ in $\mathcal{S}(\mathbb{R}^n)$. $\mathcal{F}^{-1} = \frac{1}{(2\pi)^n} \overset{\vee}{\mathcal{F}}$. Can check $\mathcal{F}^{-1}[\mathcal{F}T](\phi) = T(\phi)$.

Theorem 5.20. \mathcal{F} (Fourier transform) defines a linear automorphism of $\mathcal{S}'(\mathbb{R}^n)$.

Remark 15. Recall Plancherel from PM. \mathcal{F} extends to the completion by unif continuity. Get an isometry $\frac{1}{(2\pi)^{n/2}}\bar{\mathcal{F}}$ of $L^2 = \overline{L^1 \cap L^2}^{L^2}$. If we define $\bar{\mathcal{F}}T(\phi) = T(\bar{\mathcal{F}}\phi) = T(\hat{\phi})$ for all $\phi \in \mathcal{S} \subseteq L^1 \cap L^2$, then see that $\bar{\mathcal{F}} = \mathcal{F}$ on \mathcal{S}^1 .

For any finite measure μ on \mathbb{R}^n , have $\hat{\mu}(u) = \int_{\mathbb{R}^n} e^{-ix\cdot u} d\mu(x)$. Then

$$\hat{T}_{\mu}(\phi) = T_{\mu}(\hat{\phi}) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-ix \cdot u} \phi(u) du d\mu(x) = T_{\hat{\mu}}(\phi)$$

 $\mathcal{F}T_{\mu} = T_{\hat{\mu}} \text{ in } \mathcal{S}'(\mathbb{R}^n).$

For $T \in \mathcal{E}'(\mathbb{R}^n)$, can define $E(u) = T(e^{-i\langle \cdot, u \rangle})$. Can show that $\hat{T} = T_E$ in $\mathcal{S}'(\mathbb{R}^n)$ with E slowly increasing.

Note that the product of a slowly increasing func with a rapidly decreasing func is again rapidly decreasing, i.e., in S. For $T \in S'$, define aT for $a \in C^{\infty}$ slowly increasing by $(aT)(\phi) = T(a\phi)$ for $\phi \in S$. For any $T \in \mathcal{D}'(\mathbb{R}^n)$, define $(\tau_k T)(\varphi) = T(\tau_{-k}\phi)$ for $k \in \mathbb{R}^n$.

Lemma 5.21. Let $T \in \mathcal{S}'(\mathbb{R}^n)$ and α any multi-index

(i)
$$\mathcal{F}(\tau_y T) = e^{-i\langle y, \cdot \rangle} \hat{T}$$
 and $\mathcal{F}[e^{-i\langle y, \cdot \rangle} T] = \tau_y T$

(ii)
$$\mathcal{F}[D^{\alpha}T] = i^{|\alpha|}u^{\alpha}\hat{T}$$
 and $D^{\alpha}\hat{T} = (-i)^{|\alpha|}\mathcal{F}[x^{\alpha}T]$

Proof. Compute.

Remark 16. $\mathcal{F}[D^{\alpha}\delta_0] = i^{|\alpha|}u^{\alpha}$. So the FT of partial derivatives of Dirac measure span the space of polys.

Periodic Distribution

Definition 5.22. $T \in \mathcal{D}'(\mathbb{R}^n)$ is periodic if $\tau_k T = T$ for all $k \in \mathbb{Z}^n$

Definition 5.23. For $T \in \mathcal{E}'(\mathbb{R}^n)$, define the periodization $T_{\text{per}} = \sum_{k \in \mathbb{Z}^n} \tau_k T$.

The fundamental cell of the lattice is $Q = [-1/2, 1/2)^n$. The indicator 1_Q is not smooth.

Lemma 5.24. There exists $\psi \in C_c^{\infty}(\mathbb{R}^n)$ s.t.

- (i) $\psi > 0$
- (ii) supp $\psi \subseteq \text{Int}(Q)$ where $Q = [-1, 1]^n$.
- (iii) $\sum_{k \in \mathbb{Z}^n} \psi(x-k) = 1$ for all $x \in \mathbb{R}^n$

If ψ' is another such function and T is a periodic distribution, then $T(\psi) = T(\psi')$.

Call this ψ a periodic partition of unity (ppu).

Proof. Find $\psi_0 \in C_0^{\infty}$ supported in Int(Q) s.t. $\psi_0 = 1$ on Q. Define $S(x) = \sum_{k \in \mathbb{Z}^n} \psi_0(x-k)$. Normalize $\psi(x) = \psi_0(x)/S(x).$

If T is a periodic distribution, then

$$T(\psi) = T(\sum_{g \in \mathbb{Z}^n} \tau_g \psi' \psi) = \sum_g \tau_g T(\psi \tau_g \psi') = \sum_g T(\psi' \tau_g \psi) = T(\psi')$$

Can take $\psi_{0,j} \to 1_{\mathcal{Q}}$ ptwise and $\sup_{j} \|\psi_{0,j}\|_{\infty} < \infty$. Obtain a uniformly bounded sequence of ppu $\psi_j \to 1_{\mathcal{Q}}$.

Definition 5.25. For $T \in \mathcal{D}'(\mathbb{R}^n)$ periodic, define the mean of T as $M(T) = T(\psi)$ where ψ is any ppu.

Theorem 5.26. Let $\mathcal{E}'(\mathbb{R}^n)$. T_{per} converges in $\mathcal{S}'(\mathbb{R}^n)$. If $T \in \mathcal{D}'(\mathbb{R}^n)$ is periodic, then there exists $V \in \mathcal{E}'(\mathbb{R}^n)$ s.t. $T = \sum_{g \in \mathbb{Z}^n} \tau_g V$ in $\mathcal{D}'(\mathbb{R}^n)$.

Proof. For $T \in \mathcal{E}'$, have a cpt set $K \subseteq B_R$ (ball of radius R) and N, C > 0 s.t. for all $\phi \in \mathcal{E}$

$$|T(\phi)| \le C \sup_{x \in K, |\alpha| \le N} |D^{\alpha} \phi(x)|$$

Have $1 + |g| \le 1 + |g + x| + |x| \le 1 + |g + x| + R \le (1 + R)(1 + |g + x|)$, so

$$1 \le \frac{(1+R)^M (1+|g+x|)^M}{(1+|g|)^M}$$

for any $M \in \mathbb{N}$. For all $\phi \in \mathcal{S} \subseteq \mathcal{E}$,

$$|T\phi| \le C \frac{(1+R)^M}{(1+|g|)^M} \sup_{x \in K, |\alpha| \le N} (1+|g+x|)^M |D^{\alpha}\phi(x)|$$

Applies to $\tau_g \phi$, get a similar inequality. Since $\sum_{g \in \mathbb{Z}^n} (1+|g|)^{-n-1} < \infty$ we deduce

$$|\sum_g \tau_g T\phi| \le C' \sup_{y \in \mathbb{R}^n, |\alpha| \le N} (1+|y|)^{n+1} |D^{\alpha}\phi(y)|$$

so $\sum_g \tau_g T \in \mathcal{S}'$ by ES.

For the converse, let T be periodic and $\phi \in \mathcal{D}$. If ψ is any ppu, have

$$T\phi = T(\phi \sum_{g} \tau_g \psi) = \sum_{g} T(\psi \tau_{-g} \phi) = \sum_{g} (\psi T)(\tau_{-g} \phi) = \sum_{g} \tau_g(\psi T)(\phi)$$

Owen's Signature)

Theorem 5.27 (Convergence of Fourier series in S'). Let $U \in \mathcal{D}'(\mathbb{R}^n)$ be periodic. Then $U = \sum_{g \in \mathbb{Z}^n} u_g T_{e_{2\pi g}}$ in $S'(\mathbb{R}^n)$, where $e_{2\pi h} = e^{i\langle 2\pi h, \cdot \rangle}$ and with Fourier coefficients $u_g = M(e_{2\pi h})$

Lemma 5.28. If $T \in \mathcal{S}'$ s.t. $(e_{-k} - 1)T = 0$ for all $k \in \mathbb{Z}^n$, then $T = \sum_{g \in \mathbb{Z}^n} c_g \delta_{2\pi g}$ in \mathcal{S}' . Have $|c_g| \leq C(1+|g|)^N$ for some N, C > 0

Proof. Let $\Lambda^* = \{2\pi g : g \in \mathbb{Z}^n\}$. Take $\varphi \in \mathcal{D}(\mathbb{R}^n)$ s.t. $\operatorname{supp} \varphi \cap \Lambda^* = \varnothing$, so $(e_{-k} - 1)^{-1}\varphi \in \mathcal{D}$ and $T(\varphi) = (e_{-k} - 1)T((e_{-k} - 1)^{-1}\varphi) = 0$ for all k, so T is also supported in Λ^* . Now take ppu ψ and consider $\tilde{\psi} = \psi(\cdot/(2\pi))$. $\operatorname{supp} \tilde{\psi} \subset \{x \in \mathbb{R}^n : \forall i, -2\pi < x_i < 2\pi\}$ and $\sum_{g \in \mathbb{Z}^n} \tau_{2\pi g} \tilde{\psi} = 1$ on \mathbb{R}^n . Now define $T_g = (\tau_{2\pi g} \tilde{\psi})T$ which is supported in $\{2\pi g\}$ and have $\sum_{g \in \mathbb{Z}^n} T_g = \sum_g (\tau_{2\pi g} \tilde{\psi})T = T$ (in \mathcal{D}') and $(e_{-k} - 1)T_g = (\tau_{2\pi g} \tilde{\psi})(e_{-k} - 1)T$ for all $k \in \mathbb{Z}^n$.

Choose $k = g_j$ (j-th standard basis vector), have $(e_{-k}-1)T_g = (e^{-ix_j}-1)T_g = (e^{-(x_j-2\pi g)}-1)T_g \stackrel{\text{Taylor}}{=} (x_j-2\pi g)K(x_j)T_g$, where K is the Taylor poly which doesn't vanish near $2\pi g$, so $(x_j-2\pi g)T_g = 0$.

Take $\phi \in \mathcal{S}(\mathbb{R}^n)$ and apply Taylor expansion to get $\phi(x) = \phi(2\pi g) + \sum_{j=1}^n (x_j - 2\pi g)\phi_j(x)$ for some $\phi_j \in \mathcal{S}$, so $T_g \phi = T_g(\phi(2\pi g)) + \sum_{j=1}^n (x_j - 2\pi g)T\phi_j = \delta_{2\pi g}(\phi)T_g(1)$. Let $c_g = T_g(1)$.

 $|c_g| = |T_g(\sum_{g'} \tau_{2\pi g'} \tilde{\psi})| = |T_g(\tau_{2\pi g} \tilde{\psi})|$. Since $T_g \in \mathcal{E}' \subseteq \mathcal{S}'$ and we have a characterization of \mathcal{S}' in ES3, have $|c_g| \leq C_0 \sup_{x \in \mathbb{R}^n, |\alpha| \leq N} (1+|x|)^N |D^{\alpha} \tilde{\psi}(x-2\pi g)|$ for some $N \in \mathbb{N}$, c > 0, and $\leq C_1 (1+|x|)^N \sup_{y \in \mathbb{R}^n, |\alpha| \leq N} (1+|y|)^N |D^{\alpha} \tilde{\psi}(y)| \leq C(1+|g|)^N$. Therefore $T = \sum_g c_g \delta_{2\pi g}$ converges in \mathcal{S}' .

Proof of Thm. Apply the lemma to U. $\hat{U}=(2\pi)^n\sum_{g\in\mathbb{Z}^n}u_g\delta_{2\pi g},\ u_g=c_g/(2\pi)^n$. Take inverse FT, see $U=\sum_{g\in\mathbb{Z}^n}u_gT_{e_{2\pi g}}$. Note that $T\mapsto M[T]$ is cts on \mathcal{S}' , so $M(e_{-2\pi k}U)=\sum_{g\in\mathbb{Z}^n}u_gM(e_{-2\pi k}T_{e_{2\pi g}})=\int_{\mathcal{Q}}e^{i2\pi\langle g-k,x\rangle}dx=1$ if g=k and 0 otherwise. \square

Apply this to $U = \sum_k \delta_k = \sum_k \tau_k \delta_0$ with ppu ψ s.t. $\psi(0) = 1$. Compute Fourier coeffs. $M(e_{-2\pi g}U) = \sum_k \delta_k (e_{-2\pi g}\psi) = 1$ for all g, so $\sum_{k \in \mathbb{Z}^n} \delta_k = \sum_{k \in \mathbb{Z}^n} T_{e_{2\pi k}}$ in \mathcal{S}' . Testing this identity on $\phi(x - \cdot)$ for $\phi \in \mathcal{S}$, $x \in \mathbb{R}^n$. Get $\sum_k \phi(x - k) = \sum_k T_{e_{2\pi k}} \phi(x - \cdot) = \sum_k e^{i2\pi k \cdot x} \hat{\phi}(2\pi k)$ (Poisson summation formula when x = 0).

[Owen Broke LATEX Today]

6 Sobolev Spaces and Elliptic PDEs

Let $C^k(\Omega)$ denote th normed space $\{f:\Omega\to\mathbb{R}:D^\alpha f \text{ exists for all }0\leq |\alpha|\leq k,\ \|f\|_{C^k}<\infty\}$, where $\|f\|_{C^k}=\sum_{0\leq |\alpha|\leq k}\|D^\alpha f\|_\infty$. Similarly define the Hölder spaces for $0<\eta<1$ as $C^{k,\eta}(\Omega)=\{f\in C^k(\Omega):\|f\|_{C^{k,\eta}}<\infty\}$, where $\|f\|_{C^{k,\eta}}=\|f\|_k+\sum_{|\alpha|=k}\sup_{x\neq y}\frac{|D^\alpha f(x)-D^\alpha f(y)|}{|x-y|^\eta}$. C^k and $C^{k,\eta}$ are Banach spaces. We can replace $\|\cdot\|_\infty$ and D^α by L^p -norm and the weak derivative D^α_w .

Definition 6.1 (Sobolev space). Let $k \in \mathbb{Z}_{\geq 0}$, $1 \leq p \leq \infty$. Then $f \in W^{k,p}(\Omega)$ (Ω open) if $D_w^{\alpha} f \in L^p$ for all $0 \leq |\alpha| \leq k$. Then norm on $W^{k,p}(\Omega)$ is given by

$$||f||_{W^{k,p}} = \left(\sum_{0 \le |\alpha| \le k} ||D_w^{\alpha} f||_{L^p}^p\right)^{1/p}$$

if $p < \infty$ and

$$||f||_{W^{k,\infty}} = \max_{0 \le |\alpha| \le k} ||D_w^{\alpha} f||_{L^{\infty}}$$

When $\Omega = \mathbb{R}^n$, p = 2, have

Definition 6.2. Let $s \in \mathbb{R}$. Then $H^s(\mathbb{R}^n)$ consists of $f \in \mathcal{S}'(\mathbb{R}^n)$, $(f = T_f)$, s.t. $\hat{f} \in L^2_{loc}(\mathbb{R}^n)$ and $||f||^2_{H^s} = \int_{\mathbb{R}^n} |\hat{f}(u)|^2 (1 + |u|^2)^s du$

Note that $H^s(\mathbb{R}^n)$ is a Hilbert space for the inner product $(f,g)_{H^s} = \int_{\mathbb{R}^n} \hat{f}(u) \overline{\hat{g}(u)} (1+|u|^2)^s du$, so $H^s = L^2(\mu_s)$ for some measure μ_s on \mathbb{R}^n .

By Plancherel, for $s \geq 0$, $H^s(\mathbb{R}^n)$ consists of elements of $L^2(\mathbb{R}^n, dx)$

Proposition 6.3. For $s \geq 0$, $H^s(\mathbb{R}^n) = W^{s,2}(\mathbb{R}^n)$ with equivalent norms

Proof.

Theorem 6.4 (Sobolev embedding). Let s > n/2 + k for $k \in \mathbb{N}$ and $f \in H^s$. Then $\exists f^* \in C^k(\mathbb{R}^n)$ s.t. $f^* = f$ a.e. and $\|f^*\|_{C^k} \leq C_{s,n,k} \|f\|_{H^s}$. In particular, there is an embedding $H^s(\mathbb{R}^n) \hookrightarrow C^k(\mathbb{R}^n)$.

Remark 17.

 $\{\varnothing\}$: Have $H^s \subseteq C^{k,\eta}$ if $s > \frac{n}{2} + k + \eta$.

 $\{\varnothing, \{\varnothing\}\}: \bigcap_{s>0} H^s \subseteq C^\infty(\mathbb{R}^n)$

Proof. Take $f \in \mathcal{S}(\mathbb{R}^n)$ and note

$$\begin{split} |D^{\alpha}f(x)| &= |\mathcal{F}^{-1}[u^{\alpha}\hat{f}]| \\ &\stackrel{\text{R.L.}}{\leq} \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} |u|^{|\alpha|} |\hat{f}(u)| \frac{(1+|u|^{2})^{s/2}}{(1+|u|^{2})^{s/2}} du \\ &\stackrel{\text{C.S.}}{\leq} \frac{1}{(2\pi)^{n}} \left(\int_{\mathbb{R}^{n}} \frac{|u|^{2|\alpha|}}{(1+|u|^{2})^{s}} du \right) \left(\int_{\mathbb{R}^{n}} |\hat{f}(u)|^{2} (1+|u|^{2})^{s} du \right) \\ &\leq C_{s.n.k} ||f||_{H^{s}} \end{split}$$

For $f \in H^s$ take $f_n \in \mathcal{S}$ s.t. $f_n \to f$ in H^s and a.e. (pass to a subseq if necessary). This is Cauchy in H^s and by the same inequality in C^k , we have $f_n \to f^*$ in C^k by completeness. By uniqueness of limit, we have $f^* = f$ a.e. so $f^* = f$.

Consider

$$-\nabla^2 v + v = f \tag{\dagger}$$

where $f \in H^s(\mathbb{R}^n)$. Have Fourier transform $\hat{\nabla}^2 = -|u|^2$.

Theorem 6.5. There exists a unique solution v in $H^{s+2}(\mathbb{R}^n)$ to (\dagger) and $||v||_{H^{s+2}} \leq ||f||_{H^s}$ (elliptic regularity estimate)

Proof. Take FT get $(1+|u|^2)\hat{v}=\hat{f}$ in $\mathcal{S}'(\mathbb{R}^n)$. For $f\in L^1_{loc}$ this has unique soln $\hat{v}(u)=\frac{\hat{f}(u)}{1+|u|^2},\ u\in\mathbb{R}^n$, so $v=\mathcal{F}^{-1}\hat{v}$.

$$||v||_{H^{s+2}}^2 = \int_{\mathbb{R}^n} (1+|u|^2)^{s+r} \frac{\hat{f}(u)}{(1+|u|^2)^2} = ||f||_{H^s}^2$$

To study eqns restricted to open sets $\Omega \subseteq \mathbb{R}^n$ with boundary $\partial \Omega$, need to define the restriction of $f \in H^s$ to $\partial \Omega$. If $f \in H^s$ for s > n/2, then Sobolev embedding implies that $f \in C^{\varepsilon}$ for some $\varepsilon > 0$ and the Sobolev trace $f|_{\partial \Omega}$ exists by uniform continuity. For general s > 1/2, have

Theorem 6.6 (Trace thm). There exists a bounded linear operator $T: H^s(\mathbb{R}^n) \to H^{s-1/2}(\mathbb{R}^{n-1}),$ s > 1/2, s.t. for all $f \in \mathcal{S}(\mathbb{R}^n)$, $Tf = f|_{\mathbb{R}^{n-1} \times \{0\}}$

$$Proof.$$
 ES

Call $T = T_{\Sigma}$ for $\Sigma = \mathbb{R}^{n-1} \times \{0\}$ the boundary trace of $f \in H^s$. By change of coords, this operator extends to $T_{\partial\Omega}$ for sufficiently regular Ω . In particular, we have $T_{\partial\Omega}: H^1(\mathbb{R}^n) \hookrightarrow H^{1/2}(\partial\Omega) \hookrightarrow L^2(\partial\Omega)$ is bounded linear.

6.1 $H_0^1(\Omega)$

Any $f \in C_c^{\infty}(\Omega)$ (sufficiently regular Ω) extends by zero to an element of $H^1(\mathbb{R}^n)$ (hence in $H^s(\mathbb{R}^n)$ for all s). Have Hilbert norm

$$||f||_{H^1(\mathbb{R}^n)} = \int_{\mathbb{R}^n} (1+|u|^2)||\hat{f}(u)|^2 du = (2\pi)^n \int_{\Omega} (|f(x)|^2 + |Df(x)|^2|) dx$$

where Df is the gradient vector. Define $H_0^1(\Omega) = \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{H^1}}$ in $H^1(\mathbb{R}^n)$. This is not $W^{1,2}$ because

Proposition 6.7. Let $f \in H_0^1(\mathbb{R}^n)$. Then f(x) = 0 for almost every $x \in \Omega^c$ and if $\partial \Omega$ is sufficiently regular, then $T_{\partial \Omega} f = 0$.

Proof. Take $\varphi \in C_c^{\infty}((\Omega^c)^{\circ})$ and take $f_n \in C_c^{\infty}(\Omega)$ s.t. $f_n \to f$ in $H^1(\mathbb{R}^n)$. Have $\Lambda_{\varphi}(h) = \int_{\mathbb{R}^n} \varphi h$, then $\Lambda_{\varphi} \in (L^2)' \subseteq (H^1)'$, so $0 = \int_{\mathbb{R}^n} \varphi f_n = \Lambda_{\varphi}(f_n) \to \Lambda_{\varphi} f = \int \varphi f = 0$, so $\operatorname{supp}(f) \subseteq \Omega$. Similarly, $0 = T_{\partial\Omega} f_n \to T_{\partial\Omega} f = 0$, so f = 0 on $\partial\Omega$.

Consider the BVP

$$\begin{cases} -\nabla^2 v + v = f & \text{on } \Omega \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

Interpret this as

$$\int_{\Omega} (-\nabla^2 v + v) \varphi \stackrel{ibp}{=} \int_{\partial \Omega} \nabla v \cdot \nabla \varphi + \int_{\Omega} v \varphi = \int_{\Omega} f \varphi$$

for $f \in L^2$, $v \in H^1$.

Since C_c^{∞} is dense in H_0^1 and L^2 , this equation is the same as solving

$$\langle v, \varphi \rangle_{H^1} = \langle f, \varphi \rangle_{L^2} \tag{\dagger'}$$

for all $\varphi \in H_0^1(\Omega)$.

Theorem 6.8. For every $f \in L^2(\Omega)$, there exists a unique $v \in H_0^1(\Omega)$ s.t. (\dagger') holds and $||v||_{H^1} = ||f||_{L^2}$. Therefore the solution map $S: f \mapsto v = v_f$ is a bounded linear form $L^2(\Omega) \to H_0^1(\Omega)$ and self-adjoint for $L^2(\Omega)$.

Proof. Define $\Lambda_f(\phi) = \int_{\Omega} f \phi$ so that $\Lambda_f \in (H_0^1)'$ since

$$|\Lambda_f(\phi)| \stackrel{\text{C.S.}}{\leq} ||f||_{L^2} ||\phi||_{L^2} \leq ||f||_{L^2} ||\phi||_{H^1}$$

Hence by Riesz representation thm on H_0^1 , there exists a uniuque $v \in H_0^1$ s.t. $\langle v, \phi \rangle_{H^1} = \langle f, \phi \rangle_{L^2}$ for all $\phi \in H_0^1$.

Next take $f_1, f_2 \in L^2(\Omega)$, $\alpha \in \mathbb{R}$, and take $v_1 = S(f_1)$ and $v_2 = S(f_2)$ and define $v = v_1 + \alpha v_2$. Then,

$$\langle v, \phi \rangle_{H^1} = \langle v_1 + \alpha v_2, \phi \rangle_{H^1} = \langle v, \phi \rangle_{H^1} + \alpha \langle v_2, \phi \rangle_{H^1} = = \langle f_1, \phi \rangle_{L^2} + \alpha \langle f_2, \phi \rangle_{L^2} = \langle f_1 + \alpha f_2, \phi \rangle_{L^2}$$

So $S(f_1) + \alpha S(f_2) = S(f_1 + \alpha f_2)$. Also have

$$||S(f)||_{H^1} = ||v_f||_{H^1} \stackrel{\text{Riesz}}{=} ||\Lambda_f|| \le ||f||_{L^2}$$

To see it's self-adjoint,

$$\langle S(f),g\rangle_{L^2}=\langle g,S(f)\rangle_{L^2}=\langle S(f),S(g)\rangle_{H^1}=\langle S(g),S(f)\rangle_{H^1}=\langle f,S(g)\rangle_{L^2}$$

To study regularity of v, we introduce

$$H^s_{\mathrm{loc}}(\Omega) = \{ f \in L^2_{\mathrm{loc}}(\Omega) : \forall \xi \in C^\infty_c(\Omega), \ f \xi \in H^s(\mathbb{R}^n) \}$$

Proposition 6.9. If $f \in H^s_{loc}$ for s > k + n/2, then $f \in C^k(U)$ for any U open s.t. $\bar{U} \subseteq \Omega$.

Proof. Given U, pick $\xi \in C_c^{\infty}$ s.t. $\xi = 1$ on \bar{U} and note that $f\xi \in H^s(\mathbb{R}^n) \subseteq C^k(\mathbb{R}^n)$ (Sobolev embedding), so $f = f\xi$ on U, the result then follows.

Corollary 6.10. $\bigcap_{s>0} H^s_{loc}(\Omega) \subseteq C^{\infty}(\Omega)$.

Note that $f \in C^{\infty}(\Omega)$ may be unbounded at $\partial \Omega$.

Theorem 6.11 (Interior regularity). Let $f \in L^2(\Omega)$ and suppose $v \in H^1_0$ solves (\dagger') . Then $v \in H^2_{loc}(\Omega)$. If additionally $f \in L^2(\Omega) \cap H^k_{loc}(\Omega)$, then $v \in H^{k+2}_{loc}(\Omega)$.

Proof. Let $K \subseteq \Omega$ be any compact set, and take $\chi \in C_c^{\infty}(\Omega)$ s.t. $\chi = 1$ on K. Take $\varphi \in S(\mathbb{R}^n)$ and set $\varphi = \chi \varphi \in H_0^1$. Then (\dagger') implies

$$\int_{\Omega} (Dv \cdot D(\varphi \chi) + v \varphi \chi) dx = \int_{\Omega} f \varphi \chi dx$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Using chain rule and IBP, we rearrange the equation above to get

$$\int_{\Omega} (D(v\chi) \cdot D\varphi + v\chi\varphi) dx = \int_{\Omega} g\varphi dx$$

where $g = -(Dv) \cdot (D\chi) - vD\chi + f\chi \in L^2(\mathbb{R}^n)$. IBP again, can see that $v\chi$ solves $-\nabla^2(v\chi) + v\chi = g$ in $\mathcal{S}'(\mathbb{R}^n)$. Hence by elliptic regularity estimate, $\|v\chi\|_{H^2} \leq \|g\|_{L^2} < \infty$.

To prove $v \in H^2_{\text{loc}}$, take $\xi \in C_c^{\infty}(\Omega)$ and $K = \text{supp}(\xi)$ s.t. $v\xi = v\chi\xi$. Then $\|v\xi\|_{H^2} = \|v\chi\xi\|_{H^2} \le C_n\|v\chi\|_{H^2}\|\xi\|_{L^2} < \infty$ ($\|fg\|_{L^2} \le \|f\|_{L^2}\|g\|_{L^\infty} + \text{chain rule}$) We recognize that $g \in H^1_{\text{loc}}(\Omega)$ whenever $f \in H^1_{\text{loc}}(\Omega)$ so repeating the preceding argument given $v \in H^3_{\text{loc}}$. Can prove the rest of the theorem using the inequality $\|fg\|_{H^s} \le C_{n,s}\|f\|_{H^s}\|g\|_{C^s}$

Corollary 6.12. If $f \in C^{\infty}(\Omega) \cap L^{2}(\Omega)$, then $v \in H_{0}^{1}(\Omega) \cap C^{\infty}(\Omega)$ solves $-\nabla^{2}v + v = f$ on Ω (pointwise)

Theorem 6.13 (Rellich-Kondrashov). Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded. Let $u_j \in H^1_0(\Omega)$ s.t. $||u_j||_{H^1} \leq K$ for all j = 1, 2, ..., and some K > 0. Then $\exists u \in H^1_0(\Omega)$ s.t. $u_{j_k} \to u$ in $L^2(\Omega)$ along a subsequence.

Proof. By Banach-Alaoglu in $H_0^1(\Omega)$, we obtain $u_{j_k} \rightharpoonup u$ in H_0^1 and then in L^2 (weakly), and $||u||_{H^1} \leq K$. Also u_{j_k} , u vanish a.e. on Ω^c so

$$||u_{j_k} - u||_{L^2(\Omega)} = ||u_{j_k} - u||_{L^2(\mathbb{R}^n)} = \frac{1}{(2\pi)^n} ||\hat{u}_{j_k} - \hat{u}||_{L^2(\mathbb{R}^n)}$$

$$= \frac{1}{(2\pi^n)} \left(\int_{|z| > R} |\hat{u}_{j_k}(z) - \hat{u}(z)|^2 dz + \int_{|z| < R} |\hat{u}_{j_k}(z) - \hat{u}(z)|^2 dz \right)$$

Given $\varepsilon > 0$, have

$$\int_{|z|>R} |\hat{u}_{j_k}(z) - \hat{u}(z)|^2 dz \le \int_{|z|>R} \frac{1+|z|^2}{1+|z|^2} (|\hat{u}_{j_k}(z)|^2 + |\hat{u}(z)|^2) dz \le \frac{2}{1+R^2} (\|u_{j_k}\|_{H^1}^2 + \|u\|_{H^1}^2) < \varepsilon$$

for R sufficiently large.

For $z \in \mathbb{R}^n$ fixed,

$$\hat{u}_{j_k}(z) = \int_{\mathbb{R}^n} e^{-ix \cdot z} u_{j_k(x)} dx = \int_{\Omega} e^{-ix \cdot z} u_{j_k}(x) dx = \langle e^{-i\langle \cdot, z \rangle}, u_{j_k} \rangle \to \langle e^{-i\langle \cdot, z \rangle}, u \rangle_{L^2(\Omega)} = \hat{u}(z)$$

by weak convergence. Also

$$|\hat{u}_{j_k}(z)| + |\hat{u}(z)| \le ||u_{j_k}||_{L^1(\Omega)} + ||u||_{L^1(\Omega)} \stackrel{\text{C.s.}}{\le} C_\omega(||u_{j_k}||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}) \le 2C_\Omega K$$

which is dz-integrable on $\{z:|z|\leq R\}$, so $\int_{|z|\leq R}|\hat{u}_{j_k}(z)-\hat{u}(z)|^2dz\to 0$ by DCT.

Corollary 6.14. The solution operator S from (\dagger') is a compact linear self-adjoint operator on $L^2(\Omega)$

Proof. S maps L^2 into H_0^1 (bounded linear) and use Rellich-Kondrashov.

By spectral theorem, there exists ONB $\{w_k : k \in \mathbb{N}\}\$ of $L^2(\Omega)$ and real e-values $\mu_k \downarrow 0$ as $k \to \infty$ s.t.

$$Sw_k = \mu_k w_k$$

in $L^2(\Omega)$. Thus $w_k \in H_0^1$. For all $\varphi \in H_0^1$

$$\langle w_k, \varphi \rangle_{L^2} \stackrel{(\dagger')}{=} \langle Sw_k, \varphi \rangle_{H^1} = \mu_k \langle w_k, \varphi \rangle_{H^1}$$

Tes $\varphi = w_k$, see that $1 = \langle w_k, w_k \rangle_{L^2} = \mu_k ||w_k||_{H^1}$, so $\mu_k > 0$ for all k. In $\mathcal{D}'(\Omega)$,

$$(-\nabla^2 + I)w_k = (-\nabla^2 + I)\frac{\mu_k}{\mu_k}w_k = \frac{1}{\mu_k}(-\nabla^2 + I)Sw_k = \frac{w_k}{\mu_k}$$

Therefore.

$$-\nabla^2 w_k = \left(\frac{1}{\mu_k} - 1\right) w_k = \lambda_k w_k$$

where $\lambda_k = \frac{1}{\mu_k} - 1 \uparrow \infty$ are the e-values of $-\nabla^2$. The weak form is

$$\langle Dw_k, D\varphi \rangle_{L^2} = \lambda_k \langle w_k, \varphi \rangle_{L^2}$$

for all k and all $\varphi \in \mathcal{D}(\Omega)$ (in fact $H_0^1(\Omega)$) Note that $w_k = f$ in (\dagger') and in H_0^1 , so iterating the interior regularity thm, $w_k \in C^{\infty}(\Omega)$. Thus $-\nabla^2 w_k = \lambda_k w_k$ is true on Ω ptwise.

Theorem 6.15 (Poincare inequality). For all $u \in H_0^1(\Omega)$,

$$\frac{\langle Du, Du \rangle_{L^2}}{\langle u, u \rangle_{L^2}} \ge \lambda_1 > 0$$

Proof. ES

We can now solve the Dirichlet problem for the Laplace equation

$$\begin{cases} -\nabla^2 v = f & \text{on } \Omega \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

or the weak form: find $v \in H_0^1 \langle Dv, D\varphi \rangle_{L^2} = \langle f, \varphi \rangle_{L^2}$ for all $\varphi \in \mathcal{D}(\Omega)$. Denote this by (*)

Theorem 6.16. There exists a unique solution $v \in H_0^1(\Omega)$ to (*), for any $f \in L^2(\Omega)$.

$$v = \sum_{k=1}^{\infty} \frac{1}{\lambda_k} \langle w_k, f \rangle_{L^2} w_k$$

Proof. Take partial sums $v_J = \sum_{n=1}^J \lambda_k^{-1} \langle w_k, f \rangle_{L^2} w_k$, $J \in \mathbb{N}$, then (for J' < J)

$$\begin{split} \|v_J - v_{J'}\|_{H^1}^2 &= \langle v_J - v_{J'}, v_J - v_{J'} \rangle_{L^2} + \langle D(v_J - v_{J'}), D(v_J - v_{J'}) \rangle \\ &= \sum_{k=J'+1}^J \lambda_k^{-1} \langle w_k, f \rangle^2 + \sum_{k,k'=J'+1}^J \lambda_k^{-1} \lambda_{k'}^{-1} \langle f, w_k \rangle \langle f, w_{k'} \rangle \langle Dw_k, Dw_{k'} \rangle_{L^2} \\ &= \sum_{k=J'+1}^J \lambda_k^{-1} \langle w_k, f \rangle^2 + \sum_{k,k'=J'+1}^J \lambda_k^{-1} \lambda_{k'}^{-1} \langle f, w_k \rangle \langle f, w_{k'} \rangle \lambda_k^{-1} \langle w_k, w_{k'} \rangle_{L^2} \\ &\leq \sum_{k=J'+1}^\infty (\lambda_k^{-2} + \lambda_k^{-1} \langle w_k, f \rangle_{L^2}^2 \\ &\leq C(\lambda_1) \sum_{k=J'+1}^\infty \langle f, w_k \rangle^2 \xrightarrow{J' \to \infty} 0 \end{split}$$

So v_J is Cauchy in H_0^1 , so $v \in H_0^1$ Can check

$$\langle Dv, D\varphi \rangle_{L^2} \stackrel{ibp}{=} \langle v, -\nabla^2 \varphi \rangle_{L^2} = \sum_{k=1}^{\infty} \lambda_k^{-1} \langle v, w_k \rangle_{L^2} \langle w_k, -\nabla^2 \varphi \rangle_{L^2}$$
$$= \sum_{k=1}^{\infty} \langle v, w_k \rangle_{L^2} \langle w_k, \varphi \rangle_{L^2}$$
$$= \langle v, \varphi \rangle_{L^2}$$

We used that $\langle w_k, -\nabla^2 \varphi \rangle_{L^2} = \langle Dw_k, D\varphi \rangle_{L^2} = \lambda_k \langle w_k, \varphi \rangle_{L^2}$. Need to show uniqueness. Suppose $v' \in H^1_0(\Omega)$ s.t. (*) holds. Then let $w = v - v' \in H^1_0(\Omega)$ where $\langle Dw, D\varphi \rangle_{L^2} = \langle f - f, \varphi \rangle_{L^2} = 0$ for all $\varphi \in H^1_0(\Omega)$. Now $\|w\|_{H^1}^2 = \langle w, w \rangle_{L^2} + \langle Dw, Dw \rangle_{L^2} \leq \langle f - f, \varphi \rangle_{L^2}$ $(\frac{1}{\lambda_1} + 1)\langle Dw, Dw \rangle_{L^2} = 0$, so w = 0 a.e.

Remark 18. One can also show interior regularity estimates to deduce that for $f \in C^{\infty}(\Omega) \cap L^{2}(\Omega)$ then $v \in C^{\infty}(\Omega)$.

Variational Problems* (non-examinable) 7

Consider minimizing a functional $F(u) = ||u||_{H^2}^2 - \langle f, u \rangle_{L^2}$ over $H_0^1(\Omega)$, where f is fixed in $L^2(\Omega)$

Theorem 7.1. Let $f \in L^2(\Omega)$. Then $\inf\{F(u) : u \in H_0^1(\Omega)\} \geq \sigma > -\infty$. Moreover, there exists a unique $w \in H_0^1$ s.t. $F(w) = \sigma$, and w solves the PDE $-\nabla^2 w + w = f$ in the weak sense.

Proof. Use the inequality $ab \leq a^2/2 + b^2/2$ for $a, b \geq 0$. By Cauchy-Schwarz, $F(u) = \|u\|_{H^1}^2 - 2\langle f, u \rangle_{L^2} \geq \|u\|_{H^1}^2 - 2\|f\|_{L^2}\|u\|_{L^2} \geq \|u\|_{H^1}^2 - 2\|f\|_{L^2}^2 \geq \frac{1}{2}\|u\|_{L^2}^2 \geq \frac{1}{2}\|u\|_{H^1}^2 - 2\|f\|_{L^2}^2 \geq -2\|f\|_{L^2} > -\infty$. Then take $u_k \in H_0^1$ s.t. $F(u_k) \to \sigma$. WLOg, assume $|F(u_k)| \leq F < \infty$. Then, $\|u_k\|_{H^1}^2 = F(u_k) + 2\langle f, u_k \rangle_{L^2} \leq F + 2\|f\|_{L^2}\|u_k\|_{L^2} \leq F + 2\|f\|_{L^2}^2 + \frac{1}{2}\|u_k\|_{H^1??}^2$. Subtracting we see $\|u_k\|_{H^1}^2 \leq 2F + 4\|f\|_{L^2}^2$ for all k, so u_k is bounded in H_0^1 . By Banach-Alaoglu, there exists $u_{k_j} \to w$ weakly in H_0^1 and L^2 for some $w \in H_0^1(\Omega)$. By sheet 2, know that $\|w\|_{H^1}^2 \leq \liminf \|u_{k_j}\|_{H^1}^2$ and $\langle f, w \rangle = \lim \langle f, u_{k_j} \rangle_{L^2}$. We have $F(w) = \|w\|_{L^2}^2 = 2\langle f, w \rangle_{L^2} \leq \lim \inf \|u_{k_j}\|_{H^1}^2$ and $F(w) \geq \sigma$ by defined in $F(w) = \|u_k\|_{L^2}^2 = 2\langle f, w \rangle_{L^2} \leq \lim \inf \|u_{k_j}\|_{H^1}^2$. have $F(w) = ||w||_{H^1}^2 - 2\langle f, w \rangle_{L^2} \le \liminf (||u_{k_i}||_{H^1} - 2\langle f, u_{k_i} \rangle_{L^2}) = \sigma$, and $F(w) \ge \sigma$ by defin of inf, so $F(w) = \sigma$.

To prove uniqueness, it suffices to show that w solves the PDE. For all $v \in H_0^1$, $t \in \mathbb{R}$, we have $F(w) \leq F(w+tv)$ and $\frac{d}{dt}F(w+tv)|_{t=0} = 0$. Then $F(w+tv) = \|w+tv\|_{H^1}^2 - 2\langle f, w+tv \rangle_{L^2} = 0$ $\|w\|_{H^1}^2 + t^2 \|v\|_{H^1}^2 + 2t \langle w, v \rangle_{H^1} - 2t \langle f, v \rangle_{L^2} - 2 \langle f, w \rangle_{L^2}, \text{ so } \frac{d}{dt} (F(w+tv)) = 2t \|v\|_{H^1} + 2(\langle w, v \rangle_{H^1} - \langle f, v \rangle_{L^2}).$ At t = 0, must have $\langle w, v \rangle_{H^1} = \langle f, v \rangle_{L^2}$ for all $v \in H_0^1$.