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1 Field extensions

A field k contains a smallest subfield (prime subfield) isomorphic to Fp if k as characteristic p or Q if k
has characteristic 0.

Lemma 1.1. Let K be a field, 0 ≠ f ∈ k[X], then f has ≤ deg f roots in k

Definition. Let L be a field and K ⊆ L a subfield. We say that L is an extension of K, written L/K.

Note that L,K necessarily have the same characteristic.

Example 1.2. • C/R, Q(
√
2)/Q, R/Q

• (Adjoining a root of an irreducible polynomial) Let K be a field and f ∈ k[X] irreducible. Recall
that k[X] is a PID, so (f) is a maximal ideal. Then L = k[X]/(f) is a field extension of K and
α =X + (f) is a root of f in L.

Let L/K be a field extension. Then L can be regarded as a K-vector space.

Definition. Let L/K be a field extension. Say L/K is finite if L is a finite dimensional K-vector space.
We write [L ∶K] = dimK L for its dimension which is called the degree of L/K. If note, then L/K is an
infinite extension and write [L ∶K] = ∞.

We say that L/K is a quadratic (cubic, quartic, etc.) extension if [L ∶K] = 2 (3,4, ....). When K = Q,
we simply say L/K is quadratic, cubic, etc.

Example 1.3. [C ∶ R] = 2, [R ∶ Q] = ∞ If L =K[X]/(f), f irred. over K, then [L ∶K] = deg f .

Remark 1. Let K,L be field and ϕ ∶K → L ring hom. kerϕ = {0} is forced as a field only has two ideals,
so ϕ is an embedding, meaning that we can identify K as a subfield of L, i.e., we get a field extension.

Proposition 1.4. Let K be a finite field of characteristic p, then ∣K ∣ = pn, where n = [K ∶ Fp].

Proof. K ≅ Fn
p as an Fp-vector space.

Later will show that up to iso, there exists a unique fiel of order pn for each prime p.

Proposition 1.5. If K is a field then any finite subgroup G ≤K∗ is cyclic.

Proof. By structure theorem, G ≅ Cd1 × ... × Cdt where 1 < d1 ∣ ... ∣ dt. If not cyclic then pick a prime
p ∣ d1 and G contains a subgroup isomorphic to Cp ×Cp. Count the elements of order p (roots of xp − 1),
we get a contradiction.

Proposition 1.6. Let R be a ring of char p prime, Then the Frobenius map ϕ ∶ R → R, x↦ xp is a ring
hom.

Proof. Expand (x + y)p and use characteristic. We get (x + y)p = xp + yp which proves additivity. The
rest is trivial.

Remark 2. Have ϕ(a) = a for all a ∈ Fp ⊆ R. So Fermat’s little theorem is a trivial consequence of the
proposition above.

Theorem 1.7 (Tower law). Let M/L and L/K be field extensions. M/K is finite ⇔ M/L and L/K
are both finite. In this situation, [M ∶K] = [M ∶ L][L ∶K]
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Proof. “⇒”: As an L-vector sapce, M is finite dim, and L is a K-subspace of M so also finite dim over
K.

“⇐”: Let v1, ..., vn be a K-basis of L and w1, ...,wm an L-basis for M . We claim that {viwj} is a
K-basis of M .

• (Spanning) If x ∈M , then x = ∑λjwj = ∑µijviwj by spanning properties of the given basis.

• (Independence) If ∑µijviwj = 0, then ∑j (∑i µijvi)wj = 0, so ∑i µijvi = 0 for all j, so µij = 0 for
all i, j.

Definition. Let L/K be a field extension. Let α1, ..., αn ∈ L, then K[α1, ..., αn] is the samllest subring

of L containint K and α1, ..., αn. K(α1, ..., αn) = {
f(α1,...,αn)

g(α1,...,αn)
∶ f, g ∈K[x1, ..., xn]} is the smallest subfield

of L containing K and αi.

Observe that K(α1, ..., αn) is the field of fractions of K[α1, ..., αn].

Definition. A field extension L/K is said to be simple if L =K(α) for some α ∈ L.

Observe that the evaluation map ϕ ∶ K[X] → L is a ring hom and is the unique ring hom such that
ϕ(c) = c for all c ∈K, and ϕ(X) = α.

Definition. Let (f) = kerϕ. α is algebraic if f ≠ 0. Otherwise α is said to be transcendental.

If α is algebraic, then f is irreducible and unique up to units. We scale f to make it monic.

Definition. This monic f is called the minimal polynomial of α over K.

By 1st isomorphism theorem, K[X]/(f) =K[α], so in this caseK(α) =K[α]. Moreover, [K(α);K] =
deg f .

Remark 3. If we want to compute the inverse of α ∈ L which is algebraic over K with min polynomial f
over K, then choose 0 ≠ β ∈ K(α) and we have β = g(α) for some g ∈ K[X]. Since f is irreducible and
β ≠ 0, f, g are coprime, then can run Euclidean algorithm.

Definition. A field extension L/K is algebraic if for all α ∈ L, α is algebraic over K.

Remark 4. [K(α) ∶K] < ∞ iff α is algebraic over K. If [L ∶K] < ∞, then L/K is algebraic.

Example 1.8. K = Q, L = ⋃nQ( 2n
√
2) is an infinite algebraic extension.

Lemma 1.9. Let L/K be a field extension and α1, ..., αn ∈ L, then α1, ..., αn are algebraic over K iff
[K(α1, ..., αn) ∶K] < ∞.

Proof. “only if”: Adjoin a single αi at a time and observe that each step gives a finite extension.

Corollary 1.10. Let L/K be a field extension. {α ∈ L ∶ α algebraic over K} is a subfield of L

Proof. If α,β are algebraic, then α ± β,αβ,1/α (α ≠ 0) are elements of K(α,β) which is an algebraic
extension by the preceding lemma.

Proposition 1.11. M/L, L/K are field extensions. Then M/K is algebraic iff M/L and L/K are both
algebraic

Proof. “only if”: Clear (by definition).
“if”: If α ∈M , then there exists f = c0 + c1X + ...+ cnX

n ∈ L[X] s.t. f(α) = 0. Let L0 =K(c0, ..., cn).
Since each ci is algebraic over K, [L0 ∶ K] < ∞. Also, [L0(α) ∶ L0] ≤ deg f < ∞. So [L0(α) ∶ K] < ∞ by
tower law, so α is algebraic over K.

Example 1.12. • Let f(x) = xd − n, where n, d ∈ Z, d ≥ 2, n ≠ 0. Suppose there exists p prime s.t.
n = pem, p ∤m and (d, e) = 1, then we claim that f is irreducible over Q and [Q(α) ∶ Q] = d, where
α = d
√
n.

By Bezout’s lemma, can find r, s ∈ Z s.t. rd + se = 1. We may arrange so that s > 0. Then
pdrns = pdr(pem)s = pms. We put β = prαs so that βd = pms, then β is a root of g(x) = xd − pms,
which is irreducible over Z by Eisenstein’s criterion and hence irreducible over Q by Gauss’s lemma.
So [Q(β) ∶ Q] = d and [Q(α) ∶ Q] ≤ d, but Q(β) ⊆ Q(α), so in fact Q(α) = Q(β) and [Q(α) ∶ Q] = d.
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• Let ζp be a primitive pth root of unity, where p is an odd prime. Let α = ζp + ζ
−1
p . We want to

compute the degree of Q(α)/Q. ζp is a root of (xp − 1)/(x − 1) which is irreducible (GRM), so
[Q(ζp) ∶ Q] = p−1. Observe that overQ(α), ζp is a root of g(x) = x2−αx+1. So [Q(ζp) ∶ Q(α)] = 1,2.
It can’t be one since one contains complex numbers and the other is real, so [Q(α) ∶ Q] = (p− 1)/2
by tower law.

• Q(α), α =
√
m +
√
n, m,n,mn not squares. Clearly, Q(α) ⊆ Q(

√
m,
√
n). Conversely, can write

m = α2−2α
√
n+n, so

√
n = (α2−m+n)/(2α), so Q(α) = Q(

√
m,
√
n). [Q(

√
m,
√
n) ∶ Q(

√
n)] ≤ 2 as√

m is a root of X2−m. Can show by squaring and rationality that
√
m /∈ Q(

√
n), so [Q(α) ∶ Q] = 4

by tower law.

2 Ruler and Compass Construction

Given a finite set of points S ⊆ R2, the following operations are allowed.

1. Draw a straight line through two points in S.

2. Draw a circle with center x ∈ S and radius the distance between two points in S.

3. Enlarge S by adjoining the intersection of two discint lines/circles.

Definition. (x, y) ∈ R2 is constructible from S if one can enlarge S to contain (x, y) by a finite
sequence of operations above. We say that x ∈ R is constructible if (x,0) can be constructed from
{(0,0), (1,0)}.

Definition. A subfield K ⊆ R is constructible if there exists n ≥ 0 and a sequence of subfields of
R, Q = F0 ⊆ F1 ⊆ ... ⊆ Fn s.t. K ⊆ Fn.

Remark 5. By tower law, [K ∶ Q] is a power of 2.

Theorem 2.1. If x ∈ R is contructible then Q(x) is a constructible subfield of R.

Proof. Suppose S ⊆ R2 is a finite set of points all of whose coordinates belong to a constructible
subfield K. It suffices to show that if we adjoin (x, y) ∈ R2 to S by using allowed operations, then
K(x, y) is also constructible.

Note that (x, y) is a point of intersection of two lines/circles, so x = r + s
√
v, y = t + u

√
v (all coeff

are in K). Then, (x, y) ∈K(
√
v) ⊆ Fn(

√
v), where Fn is the last subfield in the increasing sequence

(K ⊆ Fn). So Fn(
√
v) is a degree 1 or 2 extension of Fn, so K(x, y) is constructible.

Remark 6. It can be shown that (x±y,0), (x/y,0), and (
√
x,0) are constructible from (0,0), (1,0), (x,0), (y,0).

Also, the converse of the theorem holds, i.e., Q(x) constructible Ô⇒ x constructible. (why?)

Corollary 2.2. If x ∈ R is constructible then x is algebraic over Q and [Q(x) ∶ Q] is a power of 2.

Example 2.3. Some classical problems:

• Constructing a square with equal area as a circle with random radius is impossible since this
amounts to constructing

√
π

• Construdcting a cube whose volume is twice that of a give cube is impossible as this amounts
to constructing 3

√
2, which has degree 3 over Q.

• There is no general method of trisecting an angle. For instance when the angle is 2π/3. If
2π/9 is constructible then cos(2π/9) is constructible, but we see that 2 cos(2π/9) has minimal
polynomial X3 − 3X + 1 (Use cos 3θ = 4 cos3 θ − 3 cos θ). Degree 3, not a power of 2. This also
shows that regular 9-gon can’t be constructed by ruler & compass.

3 Splitting Fields

Definition. Let K be a field, and let 0 ≠ f ∈ K[X]. An extension L/K is called a splitting field of f
over K if

1. f splits into linear factors over L.
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2. L =K(α1, ..., αn) where αi are the roots of f .

Remark 7. The 2nd condition is equivalent to saying f doesn’t split into linear factors over any subfield
of L. The 2nd condition implies [L ∶K] < ∞.

Theorem 3.1 (Existence of splitting field). If f ∈ K[X] is a non-zero polynomial, then there exists a
splitting field of f over K.

Proof. Perform induction on deg f . If f is linear then we are done by setting L =K. Assume that every
poly of degree < deg f has a splitting field, and let g be an irreducible factor fo f and let K1 =K[X]/(g)
and α1 = X + (g). Then f(X) = (X − α1)f1(X) for some f1 ∈ K1[X] with strictly smaller degree. By
induction, there exists a splitting field for f1 over K1, say L = K1(α2, ..., αn). We claim that L is a
splitting field of f over K. Obviously f splits as linear factors, and L ≅K(α1, ..., αn).

Definition. L/K, M/K field extensions. A K-homomorphism (or equivalently, K-embedding) of L into
M is a ring hom, L→M which is the identity on K.

Theorem 3.2. Let L = K(α) for some algebraic α with min poly f . Let M/K be any field extension.
Then there is a bijection

{K-hom L→M} ↔ {α ∈M ∶ f(α) = 0}

given by τ ↦ τ(α).

Proof. The correspondence is well-defined by direct computation, i.e., τ(α) is indeed a root. To see
injectivity, note that any K-hom is uniquely determined by τ(α) since L = K[X]/(f) which has basis
{1, α, ..., αn}. To see surjectivity, note that evalutation at α gives an iso K[X]/(f) → L by X +(f) ↦ α.
Let β ∈M be a root of f . Since f is irred, it’s the min poly for β ∈K. Evaluation at β and 1st iso gives
another iso of the same form. Since both are K-embeddings composing one with the inverse of the other
gives a K-hom such that τ(α) = β.

Example 3.3. There are exactly 2 Q-homs Q(
√
2) → Q(

√
2).

Definition. Let L/K, M/K be field extensions and let σ ∶K →K ′ be afield embedding. A σ-embedding
(or σ-hom) τ ∶ L→M is an embedding s.t. τ(x) = σ(y) for all x ∈K.

Note that taking σ = idK recovers the defn of K-hom.

Theorem 3.4. Let L =K(α), where α is algebraic over K with min poly f . σ ∶K →K ′ embedding and
M/K ′ field extn. Then there is a bijection

{σ-hom L→M} ↔ {α ∈M ∶ σf(α) = 0}

So in particular, the number of σ-homs L→M is ≤ [L ∶K].

Note: If f = ∑i ciX
i with ci ∈K, then σf = ∑i σ(ci)X

i.

Example 3.5. K = Q(
√
2). L = K(

√
1 +
√
2). (Exercise: 1 +

√
2 is not a square in K) There are 2

K-embeddings L→ R from theorem 3.5. However, if σ ∶K →K is the non-trivial map a+b
√
2↦ a−b

√
2,

then there is no σ-beddings L→ R.

Theorem 3.6. 0 ≠ f ∈ K[X], L splitting field of f over K and σ ∶ K → M any field embedding s.t.
σf ∈M[X] splits into linear factors. Then

1. ∃ a σ-embedding τ ∶ L→M

2. If M is a splitting field of f over K then τ is an isomorphism

Proof. To prove 1, we proceed by induction on n = [L ∶K]. The base case n = 1 is trivial. Suppose n > 1
and g is a irreducible factor of f of degree > 1. Let α ∈ L be a root of g and β ∈M a root of σg. By Thm
3.7, σ extends to an embedding σ1 ∶ K(α) →M s.t. α ↦ β and [L ∶ K(α)] < n. Now, [L ∶ K(α)] < n, so
by induction hypothesis can further extend σ1 to a τ ∶ L→M .

To prove 2, pick τ ∶ L →M (by(i)) and α1, ..., αn roots of f in L, τ(α1), ..., τ(αn) roots of σf in M .
Then M is a splitting field of σf over σK, so M = σK(τ(α1), ..., τ(αn)) = τ(K(α1, ..., αn)) = τ(L). If
L/K, M/K are splitting field over of f over K and σ ∶ K →M inclusion, then (i) and (ii) gives a K-iso
L ≅M .
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Example 3.7. X3 − 2 over F7. Splitting field F7(α), α
3 = 2 as X3 = (X − α)(X − 2α)(X − 4α).

Definition. A field K is algebraically closed if every non-constant poly over K[X] has a root in K.

Lemma 3.8. A field K field. TFAE

1. K alg-closed

2. If L/K extn and α ∈ L is alg over K then α ∈K

3. L/K algebraic implies that L =K

4. L/K finite implies L =K.

Definition. If L/K is algebraic and L is algebraically closed, then we say that L is an algebraic closure
of K.

Lemma 3.9. If L/K is algebraic extn s.t. every poly f ∈ K[X] splits over L. Then L is algebraically
closed.

Proof. If not, then there eixsts an extension M/L algebraic with [M ∶ L] > 1, so M/K is algebraic. Pick
any α ∈M . f its min poly over K, then f splits in L, which implies that α ∈ L, so M = L.

Theorem 3.10. If (i) K ⊆ C OR (ii) K is contructible, then K has an algebraic closure.

Proof. (i) If K ⊆ C, then L = {α ∈ C ∶ α algebraic over K} works.
(ii) If K is constructible, then so is K[X]. Enumerate monic irreducible polynomials f1, f2, ... and

construct a chain K = L0 ⊂ L1 ⊂ L2 ⊂ ... where Li is the splitting field of fi over Li−1. Define L =

⋃nLn.

Remark 8. If K = Q, then the proof of (i) implies that Q̄ (the set of algebraic numbers) is algebraically
closed.

4 Symmetric Polynomials

Motivation: f(X) = X3 + aX2 + bX + c. Sub X − a/3 in place of X so can wlog assume a = 0. Get a
system of of roots α,β, γ. We have

α =
1

3
[(α + β + γ) + (α + ωβ + ω2γ) + (α + ω2β + ωγ)]

Write α +ωβ +ω2γ = u and α +ω2β +ωγ = v can show that u3 + v3 = −27c and uv = −3b. Then can solve
for u3 and v3 using the quadratic X2 + 27cX − 27b3 and get the cubic formula.

Definition. R ring, f ∈ R[X1, ...,Xn] is symmetric if f(Xσ(1), ...,Xσ(n)) = f(X1, ...,Xn) for all σ ∈ Sn.

Clearly, the set of symmetric polynomials is a subring of R[X1, ...,Xn].

Definition. Elementary symmetric functions are the polynomials s1, ..., sn in Z[X1, ...,Xn] s.t.

n

∏
i=1

(T +Xi) = T
n + s1T

n−1 + ... + sn−1T + sn

i.e.,
sr = ∑

i1<...<ir

Xi1 ...Xir

Theorem 4.1 (Symmetric function theorem). 1. Every symmetric polynomial over R can be written
as a polynomial (coeff in R) in the elementary symmetric function.

2. There are no non-trivial relations between Sr. (Hence the expression obtained in (i) is unique)
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Proof. Let f ∈ R[X1, ...,Xn], f ∈ ∑d fd for fd homogeneous of degree d. Then f being symmetric implies
all fd being symmetric. So WLOG assume f is homogeneous. Impose a lexicographic ordering by
insisting that Xi1

1 ...Xin
n > X

j1
1 ...Xjn

n if ik = jk for all k ≤ r − 1 and ir > jr. This is a total ordering. Pick
the largest monomial Xi1

1 ...Xin
n that appear in f with non-zero coefficient c ≠ 0. Then Xi1

σ(1)
...Xin

σ(n)
is

in f for all σ ∈ Sn by symmetry. Up to permutation of indices, we may assume that i1 ≥ i2 ≥ ... ≥ in. So

Xi1−i2
1 (X1X2)

i2−i3 ...(X1X2...Xn)
in

Let g = si1−i21 si2−i32 ...sinn . Then f, g have the same largest monomial of degree d, so f − cg is either zero or
a sym homogeneous poly of degree d with strictly smaller leading monomial. Now we simply note that
there are only finitely many monomials of degree d in R[X1, ...,Xn], so the result follows from induction
on degrees.

We can rephrase the preceding theorem.

Theorem (Symmetric function theorem (*)). There is a ring hom θ ∶ R[Y1, ..., Yn] → R[X1, ...,Xn]
given by Yi ↦ si.

1. im θ = {sym polys on R[X1, ...,Xn]};

2. θ is injective.

Proof. We only need to prove the second part. Let sr,n = sr, where n denotes the number of variables.
Suppose G ∈ R[Y1, ..., Yn] with G(s1,n, ..., sn,n) = 0. Perform induction on n. The case n = 1 is clear.
We write G = Y k

n H where Yn ∤ H and k ≥ 0. Since sn,n is not a zero divisor in the poly ring, we have
H(s1,n, ..., sn,n) = 0, so wlog assume Yn ∤ G if G is non-zero. Replacing Xn = 0 reduces the number of
variables, and we observe that

sr,n(X1, ...,Xn−1,0) =

⎧⎪⎪
⎨
⎪⎪⎩

sr,n−1 r < n

0 r = n

So this implies that G(s1,n−1, ..., sn−1,n−1,0) = 0. By induction hypothesis, we have G(Y1, ..., Yn−1,0) = 0,
so Yn ∣ G. So G = 0 is forced, proving injectivity.

Example 4.2. Can use the algorithm to show that ∑i≠j X
2
i Xj = s1s2 − s3. Note that the leading term

is X2
1X2.

Example 4.3. The discriminant of a poly can be written as a poly on the coefficients of the poly by
symmetric function theorem.

5 Normal and Separable Extensions

Definition. An extension L/K is normal if it’s algebraic and the minimal poly of every α ∈ L splits into
linear factors over L. (i.e., if f ∈ K[X] is irred over K and has a root in L, then it splits into linear
factors over L.)

Theorem 5.1. Let [L ∶K] < ∞. Then L/K is normal iff L is the splitting field for some f ∈K[X].

Proof. “⇒”: Write L = K(α1, ..., αn). Let fi be the min poly of αi over K. Being normal implies that
fi splits, so L is the splitting field of f1f2...fn by definition of splitting fields.

“⇐”: Suppose L is the splitting field of f ∈K[X]. Let α ∈ L with min poly g over K. Let M/L be a
splitting field of g. WTS that β ∈M is a root of g implies β ∈ L.

L(α) is a splitting field of f over K(α); L(β) is a splitting field of f over K(β). Since α,β have the
same min poly, K(α) and K(β) are K-isomorphic. By uniqueness of splitting field, L(α) = L and L(β)
are K-isomorphic. So [L(β) ∶ L] = 1, so β ∈ L.

Define the formal derivative for poly over arbitrary fields.

Lemma 5.2. f ∈K[X], α ∈K root of f . Then α is a simple root iff f ′(α) ≠ 0.

Proof. Just compute
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Lemma 5.3. Let f, g ∈ K[X], and let L/K be any field extension. Then gcd(f, g) is the same when
computed in K[X] and in L[X].

Proof. Over K, the gcd is given by Eulicd’s algorithm. The result is clearly identical over L as L/K is
a field extension.

Definition. A poly f ∈ K[X] is separable if it splits into distinct linear factors in its splitting field.
(inseparable = not separable)

Lemma 5.4. 0 ≠ f ∈K[X] is separable iff gcd(f, f ′) = 1.

Proof. Work in the splitting field of f . (Lemma 5.3 says this is fine.)

Theorem 5.5. Let f ∈ K[X] be irreducible. Then f is either separable or f(X) = g(Xp) for some
g ∈K[X]. The second possibility may occur if char(K) = p > 0.

Proof. WLOG assume that f is monic. If f is irred. then gcd(f, f ′) = 1 or f . If f ′ ≠ 0, then gcd(f, f ′) = 1,
so separable. If f ′ = 0, then Write f = ∑ cixi, f

′ = ∑ icixi. We see that ici = 0 for i ≥ 1. So p ∣ ici for all
i. If p ∤ i, then p ∣ ci, i.e., ci = 0 in field of char p. If ci ≠ 0 in K, then p ∣ i, so f(X) = g(Xp) for some
g ∈K[X].

Definition. Let L/K be a field extension. Then

1. α ∈ L is separable over K if it’s algebraic and its min poly over K is separable.

2. L/K separable if for all α ∈ L, α is separable over K. (In particular, the definition implies that
L/K is algebraic.)

Theorem 5.6 (Theorem of the primitive elements). If L/K is finite and separable, then L = K(θ) for
some θ ∈ L.

Proof. Write L = K(α1, ..., αn) smoe αi ∈ L. It is sufficient to deal with the case L = K(α,β), where
f, g are minpolys of α,β over K. Work in splitting fields of fg, say M over L. Over M , write f(X) =

∏
r
i=1(X−αi), g(X) = ∏

s
i=1(X−βi), where α = α1, β = β1. L/K separable Ô⇒ β separable Ô⇒ β1, ..., βs

distinct. Pick c ∈ K and let θ = α + cβ. Define F (X) = f(θ − cX) ∈ K(θ)[X]. Then F (β) = 0. Consider
gcd(F, g).

• If β2, ..., βs are not roots of F , then gcd(F, g) = (X −β) over M , so gcd(F, g) =X −β over K(θ) by
Lemma 5.3, so β ∈K(θ). Then α = θ − cβ ∈K(θ), so K(α,β) =K(θ).

• If F (βj) = 0 for some 2 ≤ j ≤ s, then f(θ − cβj) = 0 implies that αi + cβj = α + cβ. We can solve for
c, so if ∣K ∣ = ∞, then we can always make another choice to avoid this. If ∣K ∣ < ∞, then ∣L∣ < ∞,
and Proposition 1.4 implies that L× is cyclic, generated by some θ, then L =K(θ).

Remark 9. Thm 5.5, 5.6 Ô⇒ If [K ∶ Q] < ∞ then K = Q(α) for some α ∈K.

We introduce some notation. Let HomK(L,M) be the set of all K-embeddings L ↪ M , where
L/K,M/K are field extensions.

Lemma 5.7. Let [L ∶ K] < ∞, L = K(α), f min poly of α over K. M/K any field extension. Then
∣HomK(L,M)∣ ≤ [L ∶K] with equality iff f splits into distinct linear factors over M .

Proof. Thm 3.4 implies that Homk(L,M) ↔ {roots of f in M} ≤ [L ∶ K] with equality iff f splits as
distinct linear factors over M .

Theorem 5.8. Let [L ∶ K] < ∞, L = K(α1, ..., αn) and fi min poly over αi over K. M/K any field
extension. Then, ∣HomK(L,M)∣ ≤ [L ∶K] with equality iff each fi splits into distinct linear factors.

We can generalize this theorem to σ-embeddings.

Theorem. With the same hypothesis, #σ-embeddings L↪M ≤ [L ∶K] with equality iff each σ(fi) splits
into distinct linear factors over M.

Proof. Induction on n.

7



• If n > 1, then let K1 =K(α1). Then Thm 5.7 implies that ∣HomK(K1,K)∣ ≤ [K1 ∶K].

• The induction hypothesis implies ∣{σ-embeddings K(α2, ..., αn) ↪M}∣ ≤ [L ∶K1].

The tower law implies that HomK(L,M) ≤ [L ∶ K] with equality iff equality holds in both places. Now
use Lemma 5.7. However, there is a slight little wrinkle for the second point. If each fi splits into distinct
linear factors over M , then for 2 ≤ i ≤ n min poly αi over K1 may change but still divide fi, so still splits
into distinct linear factors so equality holds in the second point.

Corollary 5.9. Let [L ∶ K] < ∞. Let L = K(α1, ..., αn), fi min poly of αi over K. Let M/K be any
field extension in which ∏i fi splits into linear factors. The TFAE,

1. L/K separable

2. Each αi separable over K

3. Each fi separable over K

4. ∣HomK(L,M)∣ = [L ∶K].

Proof. 1) Ô⇒ 2) Ô⇒ 3)
5.8
Ô⇒ 4). Assume 4) is true. Let β ∈ L, then Thm 5.8 applied to

L =K(α1, ..., αn, β) implies that β is separable over K. Since β is arbitrary, we get 1).

Remark 10. 1) ⇔ 4) is a useful characterization of separable extensions.

Example 5.10. Let K be a field, n ≥ 2. Then [K(X) ∶ K(Xn)] = n. It suffices to show that [K(X) ∶
K(Xn)] ≥ n. We observe that 1,X,X2, ...,Xn−1 are linearly independent, so if there exists rational
functions g0, ..., gn−1 ∈ K(X

n) s.t. ∑ gjX
j = 0, then clearing denominators, we get gj = 0 for all j.

Alternatively, we show that Tn − Y is irreducible in K[Y,T ]. Gauss’s lemma implies that Tn − Y is
irreducible in K(Y )[T ], so Tn −Xn is irreducible over K(Xn)[T ] as Xn is transcendental over K (c.f.
ES1 Q8).

Example 5.11. We produce an example of inseparable extension. Let p be a prime, and K = Fp and
n = p int he previous example. Then Fp(X)/Fp(X

p) is inseparable. The min poly f X over Fp(X
p) is

T p −Xp = (T −X)p.

6 Galois Extensions

Definition. A K-automorphism of L/K is an element σ ∈ Aut(L) s.t. σ∣K = idK . We write this group
as Aut(L/K).

Remark 11. • Aut(L/K) = Aut(L) if K is the prime subfield of L.

• If [L ∶K] < ∞, then anyK-embedding L→ L is surjective, so rank-nullity implies that HomK(L,L) =
Aut(L/K).

Lemma 6.1. Let L/K be a finite extension. Then ∣Aut(L/K)∣ ≤ [L ∶K]

Proof. By Thm 5.8

Definition. If S ⊆ Aut(L), then define the fixed field of S to be LS = {x ∈ L ∶ ∀σ ∈ S,σ(x) = x}.

Definition. A field extension L/K is Galois if it’s algebraic and LAut(L/K) =K.

Example 6.2. C/R, Q(
√
2)/Q. Any finite extension K/Fp is Galois since the elements fixed by the

Frobenius map are precisely roots of Xp −X, i.e., Fp.

However, Q( 3
√
2)/Q is not Galois.

Theorem 6.3 (Classification of finite Galois extension). L/K field extension and G = Aut(L/K). TFAE,

1. L/K Galois

2. L/K normal and separable

3. L is the splitting field of a separable poly over K

8



4. ∣G∣ = [L ∶K] (c.f. Lemma 6.1).

Proof. 1) Ô⇒ 2): Let α ∈ L. Suppose {σ(α) ∶ σ ∈ G} = {α1, ..., αm} and f(X) = ∏
m
i=1(X − αi). Note

that σ acts on L[X] (on coeff of each poly) and σ(f) = f for all σ. Since L/K is Galois, we must have
f ∈ K[X]. Let g be the min poly of α over K, then g ∣ f since g(σ(α)) = σ(g(α)), so every root of f is
a root of g. By construction, f is separable, so f = g, so g splits into distinct linear factors over L, so
L/K is normal and separable.

2) Ô⇒ 3): Thm 5.1 says L is the splitting field of some f ∈ K[X]. Wlog, suppose f is monic and
write f = ∏

m
i=1 f

ei
i (factorize into distinct irreducible factors in K[X]). L/K seprable implies that each fi

is separable. Moreover, if i ≠ j, then gcd(fi, fj) = 1 over K, so Lemma 5.3 implies that they are coprime
over L. Replace ei = 1, then we see that L is the splitting field of a separable poly.

3) Ô⇒ 4): Let L be the splitting field of a separable poly f ∈K[X]. Then L =K(α1, ..., αn), where
αi are roots of f . Then the min poly fi of each αi divides f , so also splits into linear factors over L.
Apply Thm 5.8.

4) Ô⇒ 1): Note that G ⊆ Aut(L/LG) ⊆ Aut(L/K) = G, so G = Aut(L/LG), and ∣G∣ = ∣Aut(L/LG)∣ ≤
[L ∶ LG]. Apply tower law to the tower K ⊆ LG ⊆ L.

Definition. If L/K is Galois, we write Gal(L/K) for Aut(L/K).

Remark 12. In the proof of 1) Ô⇒ 2), we see that if L/K is Galois and α ∈ L, then α has min poly

∏
m
i=1(X − αi) where αi are the distinct Galois conjugates of α.

Theorem 6.4 (Fundamental Theorem of Galois Theory). Let L/K be a finite Galois extension. G =
Gal(L/K).

1. Let F be an intermediate field, i.e., K ⊆ F ⊆ L. Then L/F is Galois and Gal(L/F ) ≤ G.

2. (Galois Correspondence) There is a bijection

{intermediate subfield K ⊆ F ⊆ L} ←→ {subgroups H ≤ G}

F z→ Gal(L/F )

LH ←Ð [ H ≤ G

3. If K ⊆ L ⊆ L, then F /K is Galois⇔ σF = F for all σ ∈ G⇔ Gal(L/F ) ⊴ G. And In this situation,
the restriction G→ Gal(F /K), σ ↦ σ∣F is surjective with kernel H, so Gal(F /K) = G/H.

Proof. 1): Thm 6.2 Ô⇒ L is a splitting field of some separable poly f ∈ K[X]. Then L is a splitting
field of f over F , so L/F is Galois, and it is clear that Gal(L/F ) ≤ G.

2): It is clear that F = LGal(L/F ). To prove that the other composition is the identity, we first note
that H ⊆ Gal(L/LH). Conversely, Let F = LH . As L/F is finite and separable, the thm of primitive
elements implies that L = F (α) for some α ∈ L. Then α is a root of f(X) = ∏σ∈H(X − σ(α)) which
has coefficients in F , so ∣Gal(L/F )∣ = [L ∶ LH] = [F (α) ∶ F ] ≤ deg(f) = ∣H ∣, so Gal(L/LH) ⊆ H. So
H = Gal(L/LH).

3): We claim that F /K is Galois⇔ σF = F for all σ ∈ G. Supppose F /K is Galois. Let α ∈ F with
min poly f over K. Then σ(α) is a root of f for every σ ∈ G. F /K is normal, so σ(α) ∈ F Ô⇒ σF ⊆ F .
Done by rank-nullity. Conversely, let α ∈ F . Remark 12 implies that the min poly of α over K is

∏
n
i=1(X −αi), where αi = σ(α) for some σ ∈ G. [Note that we are really using the fact that L/K is Galois

to deduce the min poly of α.] Since σ(F ) = F , all αi are elements of F , so F /K is normal and separable.
[αi’s are distinct Galois conjugates of α.] So F /K is Galois.

To prove the second equivalence, we use Galois correspondence, i.e., H ≤ G↔ F = LH . Then for each
σ ∈ G, we compute

LσHσ−1 = {x ∈ L ∶ ∀τ ∈H,στσ−1(x) = x}

= {x ∈ L ∶ ∀τ ∈H,τσ−1 = σ(x)}

= {x ∈ L ∶ σ−1(x) ∈ LH = F}

= σ(F )

so that σ(F ) = F ⇔ (∀σ ∈ G, LσHσ−1 = LH) ⇔ (∀σ ∈ G, σHσ−1 = G) ⇔H ⊴ G.

In this situation, we clearly have ker(Gal(L/K)
res
Ð→ Gal(F /K)) = Gal(L/F ) = H. The desired

isomorphism Gal(F /K) ≅ G/H then follows from 1st iso.
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Example 6.5. Gal(Q(
√
2,
√
3)/Q) ≅ C2 × C2. The automorphisms are uniquely determined by the

images of
√
2 and

√
3.

Definition. Let L1, L2 be subfields of a field M . The composite L1L2 is the smallest subfield of M
containing L1 and L2.

Theorem 6.6. Let [M ∶K] < ∞, L1, L2 intermediate subfields

(i) If L1/K is Galois, then L1L2/L2 is Galois, and have injective group homomorphism Gal(L1L2/L2) ↪
Gal(L1/K). This is surjective if L1 ∩L2 =K.

(ii) If L1/K, L2/K are Galois, then L1L2/K is Galois and there is an injective group hom Gal(L1L2/K) ↪
Gal(L1/K) ×Gal(L2/K)

Proof. (i): L1/K is the splitting field of a separable poly f , so L1L2 is the splitting field of f over L2,
so L1L2/K is Galois. The restriction map is well-defined. Note that L1/K is normal, so α ∈ L1 implies
that σ(α) ∈ L1 for all σ ∈ Gal(L1L2/L2), so σ(L1) = L1. To see injectivity, note that if σ∣L1 is the
identity, then by definition σ acts trivially on both L1 and L2, so σ is the identity. Suppose L1 ∩L2 =K.
Since L1/K is finite separable, we have L1 = K(α) for some α ∈ L1 with min poly f over K. Suppose
f = gh over L2 is a non-trivial factorization. Since f factorizes as into linear factors over L1, we must
have g, h ∈ (L1 ∩ L2)[X], but L1 ∩ L2 = K, so this contradicts the fact that f is irreducible over K.
Note that L1L2 = L2(α), so [L1L2 ∶ L2] = deg(f) = [L1 ∶ K], so we have surjectivity. Conversely,
since im(res) ⊆ Gal(L1/(L1 ∩ L2)) ⊆ Gal(L1/K). If the restriction map is surjective, then by Galois
correspondence, we must have L1 ∩L2 =K.

(ii): Li/K is the splitting field of fi over K, where fi is separable. Then L1L2/K is the splitting
field of lcm(f1, f2) over K, which is separable, so L1L2/K is Galois. We define a homomorphism
Gal(L1L2/K) → Gal(L1/K) × Gal(L2/K) by σ ↦ (σ∣L1 , σ∣L2). Injectivity is clear. It’s surjective iff
[L1L2 ∶ K] = [L1 ∶ K][L2 ∶ K] iff [L1L2 ∶ L2][L2 ∶ K] = [L1 ∶ K][L2 ∶ K] iff [L1L2 ∶ L2] = [L1 ∶ K] iff
L1 ∩L2 =K by (i).

Theorem 6.7. L/K finite separable. Then ∃M/L s.t.

(i) M/K is Galois

(ii) If L ⊆M ′ ⊆M and M ′/K is Galois, then M =M ′

Definition. We say that M/K is the Galois closure of L/K.

Proof. (i): The theorem of primitive element implies that L =K(α). Let f be the min poly of α over K
and let M be the splitting field of f over L, then M/K is Galois.

(ii): If L ⊆M ′ ⊆M and M ′/K is Galois, then f splits into linear factors over M ′, but by uniqueness
of splitting field we must have M ′ =M .

Example 6.8. Q( 3
√
2)/Q has Galois closure Q(ω, 3

√
2)/Q.

7 Finite Field

Theorem 7.1. If q = pn for p prime, then

(i) There exists a field of order q

(ii) It is unique up to iso. (Any field with q elements is a splitting field of Xq−X over Fp. In particular,
any two finite field of order q are isomorphic.)

Proof. (i) Let L be the splitting field of Xq −X over Fp. Let K ⊂ L be the fixed field of ϕ ∶ L→ L,x↦ xq.
Then K = {α ∈ L ∶ ϕ(α) = α} = {α ∈ L ∶ αq = α}, so ∣K ∣ ≤ q. By considering the derivative, we see that
xq − x is separable over Fp, so ∣K ∣ = q.

(ii) If K is a field of order q, then Lagrange theorem implies that αq = α for all α ∈K. Then Xq −X
splits into linear factors, i.e. ∏α∈K(X−α). Clearly this polynomial doesn’t split over any proper subfield,
so K is the splitting field of Xq −X over Fp. Then follows from the uniqueness of splitting field.

Remark 13. There is no canonical isomorphism.

Theorem 7.2. Fpn/Fp is Galois, and Gal(Fpn/Fp) ≅ Cn generated by the Frobenius.
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Proof. Let L = Fpn . Let G ⊆ Aut(L/Fp) be the subgroup generated by the Frobenius map ϕ. Then
∣LG∣ = ∣Lϕ∣ = ∣{α ∈ L ∶ αp = α}∣ ≤ p. Also, Fp ⊆ LG, so LG = Fp. Note that LAut(L/Fp) is a subfield of
LG = Fp, so LAut(L/Fp) = Fp, so L/Fp is Galois with Galois group ⟨ϕ⟩ ≅ Cn.

Hence, any finite extension of finite field is Galois.

Corollary 7.3. L = Fpn has a unique subfield of order pm for each m ∣ n and no others.

Proof. Essentially a consequence of Galois correspondence.

8 Traces and Norms

L/K finite extension of degree n. For α ∈ L, mα ∶ L→ L,x↦ αx is K-linear.

Definition. TrL/K(α) = tr(mα) and NL/K(α) = detmα.

Lemma 8.1. (i) TrL/K ∶ L→K is K-linear.

(ii) NL/K ∶ L→K is multiplicative

(iii) If α ∈K, then TrL/K(α) = [L ∶K]α and NL/K(α) = α
[L∶K].

(iv) NL/K(α) = 0 iff α = 0.

Proof. Trivial.

Lemma 8.2. Let M/L/K be finite extensions and α ∈ L. Then TrM/K(α) = [M ∶ L]TrL/K and NM/K =

NL/K(α)
[M ∶L].

Proof. Write down the matrix in some basis of L, then pick a K-basis of M as in the proof of Tower law,
then [mα]M/K will be in block diagonal form.

Theorem 8.3. Suppose [L ∶ K] < ∞ and α ∈ L with min poly f(X) = Xn + cn−1X
n−1⋯ + c0 over K.

Then TrL/K(α) = −[L ∶K(α)]cn−1 and NL/K(α) = ((−1)
nc0)

[L∶K(α)].

Proof. By lemma 8.2, suffices to prove the case L = K(α). Write mα in the basis 1, α, ..., αn−1, i.e., the
companion matrix of f , then can read off trace and det.

Theorem 8.4 (Transitivity of traces and norms). M/L/K finite extensions with α ∈M . Then TrM/K(α) =
TrL/K(TrM/L(α)) and NM/K(α) = NL/K(NM/L(α)).

Proof. (Proof non-examinable) will write up this part later.

Theorem 8.5. L/K (finite) Galois extension with G = Gal(L/K). Let α ∈ L. Then TrL/K = ∑σ∈G σ(α)
and NL/K = ∏σ∈G σ(α).

Proof. The min poly of α is given by ∏
n
i=1(X − αi). Let m = [L ∶ K(α)] = ∣Gal(L/K(α))∣ = ∣StabG(α)∣.

Use theorem 8.3.

The following is a variant for separable extension. Let K̄ be the algebraic closure of K, then
∣HomK(L, K̄)∣ = [L ∶K]

Theorem 8.6. L/K is separable of deg d. Let σ1, ...., σd be K-embeddings L ↪ K̄. Let α ∈ L. Then
TrL/K(α) = ∑

d
i=1 σi(α) and NL/K(α) = ∏

d
i=1 σi(α).

Proof. f be min poly over K. Thm 3.4 implies that HomK(K(α), K̄) ↔ {α1, ..., αn}. By separability,
each K-embedding K(α) ↪→ K̄ extends to L ↪ K̄ in exactly m = [L ∶K(α)] ways. Apply thm 8.3 and
note that ∣{1 ≤ i ≤ d ∶ σi(α) = αj}∣ =m.
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9 The Galois Group of a Polynomial

f ∈ K[X] separable of degree n. Let L be a splitting field of f over K. Then Gal(L/K) acts on the
roots of f which determines an injectie group homomorphism Gal(L/K) → Sn.

Definition. The image of this hom Gal(L/K) → Sn is the Galois group of f over K, denoted Gal(f)
or Gal(f/K).

Note that this is only defined up to conjugation.

Lemma 9.1. Let f ∈K[X] separable. f irred iff Gal(f/K) is transitive.

Proof. “⇐∶” If f = gh for gh non-const. Then Gal(f/K) sends roots of g to roots of g and not roots of
h, so the Galois group cannot be transitive.

“⇒” WLOG assume f monic with a root α ∈ L. Then f is the min poly of α over K. We have
{σ(α) ∶ σ ∈ Gal(L/K)} = {roots of f in L}, i.e., the action of Gal(L/K) on roots of f is transitive.

Definition. Let f ∈ K[X] be a monic separable poly with roots α1, ..., αn. Splitting field L. Define
disc(f) = ∏i<j(αi − αj)

2.

Lemma 9.2. Assume char(K) ≠ 2. Let ∆ = disc(f). The fixed field of Gal(f/K) ∩An is K(
√
∆). In

particular, Gal(f/K) ⊆ An iff ∆ is a square in K.

Proof. Let δ = ∏i<j(αi − αj). Separability and char(K) ≠ 2 implies that δ ≠ −δ. If σ ∈ G = Gal(f/K),
then σ(δ) = ϵ(σ)δ. Note that G ∩An = {σ ∈ G, ϵ(σ) = 1} = Gal(L/K(δ)) which corresponds to K(δ) be
Galois correspondence.

9.1 Roots of quartic polys

Note that S4 acts on the set of double transpositions by conjugation, which gives a homomomorphism
π ∶ S4 → S3. One can check that kerπ = V4.

Transitive subgroup of S4 Image under π
S4 S3

A4 A3

C4, D8 C2

V4 {e}

If f = ∏
4
i=1(X − αi) is a monic quartic, define

β1 = (α1 + α2)(α3 + α4)

β2 = (α1 + α3)(α2 + α4)

β3 = (α1 + α4)(α2 + α3)

Definition (Resolvent cubic). ∏
3
i=1(X − βi)

Theorem 9.3. f, g as above.

(i) f ∈K[X] Ô⇒ g ∈K[X]

(ii) f separable Ô⇒ g separable

(iii) (i) and (ii) Ô⇒ π(Gal(f/K)) = Gal(g/K).

In particular, if f is irreducible then Gal(g/K) determines Gal(f/K) up to conjugation in S4.

Proof. (i) Each coeff of g is a sym poly in Z[β1, β2, β3] hence symmetric in Z[α1, α2, α3, α4]. By sym-
metric function theorem, g is a Z-coefficient polynomial in the coefficients of f .

(ii) Compute β1 − β2 = (α1 − α4)(α3 − α2). Repeat for all combination.
(iii) Let M be a splitting field of f over K. Let L =K(β1, β2, β3), which is a splitting field of g over

K. Observe that under the restriction map Gal(M/K) → Gal(L/K), the action of σ on αi restricts to
the action of π(σ) on βi. This restriction map is surjective, so we have what we want.
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Proposition 9.4. If f is monic quartic, g its resolvent cubic. Then

(i) disc(f) = disc(g)

(ii) If f =X4 + pX2 + qX + r, then g(X) =X3 − 2pX2 + (p2 − 4r)X + q2.

Proof. Compute....

One can obtain a formula for the roots of quartic polys.

1. Make the quartic depressed.

2. Find β1, β2, β3 using Cardano’s formula.

3. Choose square roots such that
√
−β1

√
−β2

√
−β3 = −q, then α1 =

1
2
(
√
−β1 +

√
−β2 +

√
−β3).

9.2 Further results

Lemma 9.5. Let f ∈ Fp[X] be a separable poly whose irred. factors have degree n1, ..., nr. Then
Gal(f/Fp) is generated by a single element of cycle type (n1, ..., nr).

Proof. Let L be a splitting field of f over Fp. Let α1, ..., αn be roots of f in L. Thm8.2 implies that
G = Gal(L/Fp) is cyclic generated by the Frobenius x ↦ xp. Note that Gal(f/Fp) acts transitively on
the roots of each irred. factor, so the Frobenius acts by an element of cycle type (n1, ..., nr).

Theorem 9.6 (Reduction mod p). f ∈ Z[X] monic separable of degree n ≥ 1. Let p be a prime such that
f̄ (reduction of f mod p) is spearable over Fp. Then Gal(f̄/Fp) ⊆ Gal(f/Q).

Corollary 9.7. Same assumption on f and p. Suppose f̄ = g1⋯gr ∈ Fp[X], where gi is irred. of degree
ni. Then Gal(f/Q) ⊆ Sn contains an element of cycle type (n1, ..., nr).

Proof. This is essentially a consequence of lemma 9.5 and 9.6.

Let f ∈K[X] be a monic separable polynomial of degree n with splitting field L and roots α1, ..., αn.
Let

F (T1, ..., Tn,X) = ∏
σ∈Sn

(X − α1Tσ(1) +⋯ + αnTσ(n))

This is a polynomial in K[T1, ..., Tn,X]. Note that this polynomial ring admits an action of Sn by
permuting the variables T1, ..., Tn, and F is fixed by this action.

Lemma 9.8. Let F1 ∈ K[T1, ..., Tn,X] be an irreducible factor of F . Then Gal(f/K) is conjugate to
StabSn(F1).

Proof. WLOG, assume F1 is monic inX. Replacing F1 by τ ⋅F1 for some τ ∈ Sn, we may assume that it has
a factorX−(α1T1+⋯+αnTn). Then for each σ ∈ G = Gal(f/K), F1 has a factorX−(ασ(1)T1+⋯+ασ(n)Tn).
Hence, ∏σ∈G(X −(ασ(1)T1+⋯+αsσ(n)Tn)) has coefficients in K and divides F1 and hence must be equal
to F1 by irreducibility. By direct computation, we have τ ⋅ F1 = F1 iff G = Gτ−1 iff τ ∈ G.

We now try to prove Thm 9.6.

Proof of Thm 9.6 (Non-examinable). By symmetric function theorem, coefficients of F are Z-coeff polys
in the coeffs of f . So if f ∈ Z[X], then F ∈ Z[T1, ..., Tn,X]. Similarly, f̄ ∈ Fp[X] and F̄ ∈ Fp[T1, ..., Tn,X].
Write F = F1⋯Fs, where Fi are distinct irreducibles and similarly F̄ = Φ1⋯Φt. WLOG, Φ1 ∣ F̄1. Then

{τ ∈ Sn ∶ τ ⋅Φ1 = Φ1} ⊆ {τ ∈ Sn ∶ τ ⋅ F1 = F1}
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10 Cyclotomic and Kummer Extension

K field, n ≥ 1 integer, and char(K) ∤ n (trivially true if charK = 0). Let L/K be the splitting field of
xn − 1 (so L/K is Galois since xn − 1 is separable)

Let µn = {x ∈ L ∶ x
n = 1} ≤ L×. This is cyclic of order n, called the group of nth root of unity.

Definition. ζn ∈ µn is a primitive nth root of unity if ζn has order n in µn.

Definition. K(ζn)/K is a cyclotomic extension.

Theorem 10.1. There is an injective group hom χ ∶ Gal(K(ζn)/K) ↪ (Z/n)×. In particular Gal(K(ζn)/K)
is abelian and [K(ζn) ∶K] ∣ ϕ(n), where ϕ is Euler’s totient function.

Of course this still requires charK ∤ n.

Proof. Every automorphism σ fixing K is uniquely determined its value at ζn (it has to map ζn to ζan
where a is unique mod n), which has to be another primitive nth root of unity (need to be a bijection).
Can check that χ(σ) = a is well-defined and an injective group hom.

Remark 14. Note that χ doesn’t depend on the choice of ζn.

Corollary 10.2. If K = Fp and p ∤ n, then [K(ζn) ∶K] = order of p in (Z/n)×.

Proof. The Galois group is generated by Frobenius, so the degree is the order of Frobenius, under the
injective hom χ, this translates to the order of p in (Z/n)×.

Definition. The nth cyclotomic poly is Φn(x) = ∏(a,n)=1(x − ζ
a
n), where ζn = e

i2π/n.

We note that Gal(Q(ζn)/Q) permutes primitive roots of unity, so Φn(x) ∈ Q[x]. Note that we also
have xn − 1 = ∏d∣nΦd(x). Now proceed by induction, the base case clearly holds. If also holds for Φk,
k < n, then Φn(x)f(x) = x

n − 1 for some f ∈ Z[X] by induction hypothesis, then Gauss’s lemma implies
that f divides xn − 1 in Z[X]. The quotient has to be Φn(x), so Φn(x) ∈ Z[x].

Theorem 10.3. If K = Q, then χ in Thm 10.1 is an iso. [In particular, Φn is irred over Q and
[Q(ζn) ∶ Q] = ϕ(n)]

Proof. Suppose p prime p ∤ n. WTS imχ contains p mod n (Then imχ contains a mod n for all a s.t.
(a,n) = 1, which would give us surjectivity) Let f, g be min polys of ζn and ζpn over Q.

(i) If f = g, then there exists σ ∈ Gal(Q(ζn)/Q) s.t. σ(ζn) = ζpn. Done.

(ii) If f ≠ g, then f, g are distinct irreducible monic factors of xn−1 and f, g ∈ Z[X]. Have fg ∣ (xn−1).
We see that ζn is a root of g(Xp), so f(X) ∣ g(Xp). Reducing mod p, we have f̄(X) ∣ ḡ(X)p, but
this would imply that xn − 1 is inseparable over Fp. Contradiction.

Theorem 10.4 (Gauss). n ≥ 3, ζn = e
i2π/n. TFAE,

(i) A regular n-gon is contructible by ruler and compass

(ii) α = 2 cos(2π/n) is contructible

(iii) [Q(α) ∶ Q] = 2k for some k

(iv) ϕ(n) = [Q(ζn) ∶ Q] is a power of 2.

Proof. To see (iii) implies (iv), We note that Q ⊂ Q(α) ⊂ Q(ζn), where the last extension has degree ≤ 2
and the first extension is a power of 2, and [Q(ζn) ∶ Q] = ϕ(n). Similar argument shows (iv) implies (iii).

Need to prove (iv) implies (ii). By the converse of Thm 2.1 (whose proof was omitted), it suffices
to show that Q(α) is constructible. By FTGT, this amounts to finding a suitable chain of subgroups,
Gal(Q(ζn)/Q(α)) = H1 ≤ H2 ≤ ⋯ ≤ Hm = Gal(Q(ζn)/Q), but this is easy since ∣Hm∣ is a power of 2. (If
H1, ...,Hj have been chosen, then G/Hj has order 2something, then gHj has order 2 for some g, then just
let Hj+1 = ⟨Hj , g⟩.)

Corollary 10.5. A regular n-gon is constructible iff n is a product of a power of 2 and distinct primes

of the form Fn = 2
2k + 1.
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Proof. Look at the formula of Euler’s totient function. see that ϕ(n) is a power of 2 iff n is a product
of a power of 2 and distinct primes of the form 2m, but if 2m + 1 is a prime then m is a power of 2 (put
x = 2a in xb + 1 = (x + 1)(......) which is a non-trivial factorization when m = 2ab for some odd b).

Theorem 10.6 (Linear independence of field embeddings). L,K fields, σ1, ..., σn ∶K ↪ L. distinct field
embeddings. If λ1, ..., λn ∈ L satisfy λ1σ1(x) +⋯ + λnσn(x) = 0 for all x ∈K, then λ1 = ⋯ = λn = 0.

Proof. Induction on n. Trivial if n = 1. Now, if n ≥ 2, and λ1σ1(x) +⋯ + λnσn(x) = 0 for all x ∈K, then
pick y ∈K s.t. σ1(y) ≠ σ2(y) and replace x by xy. We then get λ1σ1(x)σ1(y)+⋯+λnσn(x)σn(y) = 0 for
all x ∈ K. Now subtract a suitable multiple of the first equation from this, we eliminate λ1σ1(x)σ1(y).
Invoke the induction hypothesis.

10.1 Kummer’s theory

Assume charK ∤ n. and µn ⊆ K. Let a ∈ K×. Consider the splitting field L/K of xn − a, which is
separable by considering derivatives, so L/K is Galois. If α is a root, then f(X) = ∏

n−1
j=0 (X − ζ

j
nα) so

that L =K(α).

Definition. K( n
√
a)/K is called a Kummer extension (require µn ⊆K)

Theorem 10.7. If µn ⊆ K and a ∈ K×, then there exists an injective group hom θ ∶ Gal(K( n
√
a)/K) →

µn. In particular, Gal(K( n
√
a)/K) is cyclic and [K( n

√
a) ∶K] ∣ n.

Proof. Let G be the Galois group. If σ ∈ G, then n
√
a and σ( n

√
a) are roots of xn − a, so σ( n

√
a) = ζrn

n
√
a

for some r which is unique. Define θ(σ) = ζrn. Note that any σ ∈ G is uniquely determined by σ( n
√
a).

Remark 15. The defn of θ doesn’t depend on the choice of ζn or the choice of n
√
a. To see this, suppose

α,β are roots of xn − a, then αn/βn = 1, so α/β ∈K, so σ(α/β) = α/β, so σ(α)/α = σ(β)/β.

Definition. (K×)n = {xn ∶ x ∈K}.

Corollary 10.8. µ ⊆K, a ∈K×. Then

(i) [K( n
√
a) ∶K] = order of a in K×/(K×)n.

(ii) xn − a is irreducible over K ⇔ a is not a dth power in K for any 1 < d ∣ n.

Proof. (i) α = n
√
a. G Galois group. am ∈ (K×)n iff αm ∈ K× iff σ(αm) = αm for all σ ∈ G iff θ(σ)m = 1

iff im θ ⊆ µm iff ∣ im θ∣ ∣m iff [K(α) ∶K] ∣m, so [K(α) ∶K] = least m s.t. am ∈ (K×)n, i.e., the order of a
in K×/(K×)n.

(ii) xn − a is irred over K iff [K(α) ∶ K] = n iff a has order n in K×/(K×)n iff ∄m ∣ n,m < n s.t.
am ∈ (K×)n iff /∃ d ∣ n, d > 1 s.t. a ∈ (K×)d, where d is the complementary divisor of m. [Note: in the
last “iff”, we used the fact that µn ⊆K ⇒ µm ⊆ (K

×)d where n =md.]

Theorem 10.9 (Kummer). If charK ∤ n and µn ⊆ K, then every degree n Galois extension L/K with
cyclic Galois group is of the form L =K( n

√
a) for some a ∈K×.

Proof. Suppose Gal(L/K) = ⟨σ⟩ ≅ Cn, Consider ∑
n−1
j=0 ζjnσ

j(x) (Lagrange resolvent). By linear inde-

pendence of field embeddings, there exists x such that 0 ≠ α = ∑
n−1
j=0 ζjnσ

j(x). By direct computation,

σ(α) = ζ−1n α. From this we know that the Galois conjugates of α are given by ζjnα. Also by direct
computation σ(αn) = αn, so αn = a ∈ K. Also, the min poly of α is xn − a, so K(α)/K has degree n, so
K(α) = L.

Now let charK = 0 and f ∈K[X] irreducible.

Definition. f is soluble by radicals over K if there exists fields K =K0 ⊆K1 ⊆ ⋯ ⊆Km s.t. f has a root
in Km and Ki =Ki−1(αi) for all 1 ≤ i ≤m, where αdi

i ∈Ki−1, di ≥ 1.

Definition. A finite group G is soluble if there exists subsgroups {e} = H0 ≤ H1 ≤ ⋯ ≤ Hm = G s.t.
Hi−1 ⊴Hi for all 1 ≤ i ≤m and Hi/Hi−1 is abelian.

Remark 16. The above definition is unchanged if replace abelian by cyclic or cyclic of prime order.

Lemma 10.10. If G is soluble then every subgroup of G is soluble.
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Theorem 10.11. f ∈K[X] irred. f soluble by radicals over K iff Gal(f/K) is soluble as a group.

Lemma 10.12. Let L/K be a finite Galois extension with Gal(L/K) = {σ1, ..., σm}, σ1 = id. Let α ∈ L×

and n ≥ 1. Then M = L(µn,
n
√
σ1(a), . . . ,

n
√
σm(a)) is a Galois extension of K.

Proof. Let f = ∏
m
j=1(X

n − σj(a)) ∈K[X]. M is the composite of L and a splitting field of f over K, so
M/K is Galois. (This is Thm 6.6 (ii))

Proof of Thm 10.11. (⇒) There exists a sequence of fields K = K0 ⊆ K1 ⊆ ⋯ ⊆ Km s.t. f has a root in
Km and for each 1 ≤ i ≤ m, Ki = Ki−1(αi) with αdi

i ∈ Ki−1. Repeatedly applying lemma 10.12, we may
assume that Km/K is Galois. By adjoinng suitable roots of unity, we may further assume that each
extension Ki/Ki−1 is either cyclotomic or Kummer. By Thm 10.1 and 10.7, Gal(Ki/Ki−1) is abelian. By
FTGT, Gal(Km/K) is soluble. Since f has a root in Km and Km/K is normal, we know that f splits
over Km. This means that Gal(f/K) is a quotient of Gal(Km/K), which must also be soluble.

(⇐) By FTGT, there exists a sequence of fields K = K0 ⊆ K1 ⊆ ⋯ ⊆ Km s.t. Km is the splitting
field of f over K and that each Ki/Ki−1 is Galois with cyclic Galois group (refined definition). Let
n = lcm1≤i≤m[Ki ∶ Ki−1] and consider K = K0 ⊆ K0(ζn) ⊆ K1(ζn) ⊆ ⋯ ⊆ Km(ζn). Then Ki(ζn)/Ki−1(ζn)
is Galois and the group homomorphism Gal(Ki(ζn)/Ki−1(ζn)) → Gal(Ki/Ki−1) is injective. Hence, each
Gal(Ki(ζn)/Ki−1(ζn)) is cyclic of order dividing n.

11 Algebraic Closure

Definition. A rel ≤ on a set S is a partial order of ∀x, y, z ∈ S,

(i) x ≤ x

(ii) x ≤ y and y ≤ z implies x ≤ z. (iii) x ≤ y and y ≤ x implies x = y.

(S,≤) is a poset. It’s said to be totally ordered if moreover for all x, y ∈ S have either x ≤ y or y ≤ x.
Let T ⊆ S.

(i) T is a chain if it’s totally ordered by ≤

(ii) x ∈ S is an upper bound for T if t ≤ x for all t ∈ T .

(iii) x ∈ S is maximal if ∄y ∈ S with x ≤ y and x ≠ y

Theorem 11.1 (Zorn’s lemma). Let S be a non-empty poset. Assume that every chain has an upper
bound, then S has a maximal element.

Theorem 11.2. K field.

(i) ∃ an algebraic extension L/K s.t. every non-constant f ∈K[X] has a root in L.

(ii) K has algebraic closure K̄.

Proof. (i): Let S = {monic non-constant polynomials over K}. Let R =K[Xf ∶ f ∈ S]. Let I ⊆ R be the
ideal generated by {f(Xf) ∶ f ∈ S}. We claim that I ≠ R.

proof of claim: If 1 ∈ I, then

1 = ∑
f∈T

gff(Xf) (∗)

for some T ⊆ S finite and gf ∈ R. Let L/K be a splitting field of ∏f∈T f and for each f ∈ T αf ∈ L a root
of f . Define a ring homomorphism ϕ ∶ R → L[Xf ∶ f ∈ S ∖ T ] as follows:

ϕ(Xf) =

⎧⎪⎪
⎨
⎪⎪⎩

αf f ∈ T

Xf f ∉ T

and ϕ fixes elements of K.
Now applying ϕ to (∗) gives 1 = ∑f∈T ϕ(gf)f(αf) = 0, which is a massive contradiction.
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This means that R/I has a maximal ideal, so ∃J ⊴ R maximal s.t. I ⊆ J (we have used Zorn’s lemma).
Let L = R/J and let αf =Xf + J . Then f(αf) = 0. Observe that

L = ⋃
T⊆S,∣T ∣<∞

K(αf ∶ f ∈ T )

so L/K is algebraic.
(ii): Repeating the construction from (i), we get a sequence K = K0 ⊆ K1 = L ⊆ K2 ⊆ ⋯ with the

property that each non-constant poly in Kn[X] has a root in Kn+1. The field ⋃n∈NKn is an algebraic
closure of K.

Proposition 11.3. Let L/K be an algebraic extension, M/K a field extension with M algebraically
closed. Then there exists K-embedding L↪M .

Proof. Define S = {(F,σ) ∶ K ⊆ F ⊆ L, σ ∶ F → M (K-embedding)} equipped with the partial order
(F1, σ1) ≤ (F2, σ2) if F1 ⊆ F1 and σ2∣F1 = σ1. Note that the poset (S,≤) defined this way is non-empty
as (K, id) ∈ S. Suppose T = {(Fi, σi) ∶ i ∈ I} is a chain where I is some index set. Let F = ⋃i∈I Fi and
σ ∶ F → M,x ↦ σi(x) if x ∈ Fi. This is a well-defined element of S which is an upper bound of T . We
are now in the situation of Zorn’s lemma, so S has a maximal element, say (F,σ).

Let α ∈ L. Since L/K is algebraic, α must be algebraic over F . Since M is algebraically closed, we
can extend σ ∶ F ↪M to τ ∶ F (α) ↪M . Then (F,σ) ≤ (F (α), τ). By maximality we must have α ∈ F ,
so F = L.

Here is a variant: Let L/K be algebraic extension and σ ∶ K ↪M field embedding with M
algebraically closed. Then there exists a σ-embedding L↪M .

Corollary 11.4 (Uniqueness of algebraic closure). K field. L1, L2 algebraic closures of K. Then there
exists a K-isomorphism ϕ ∶ L1 → L2.

Proof. Prop. 11.2 implies that there exists a K-embedding ϕ ∶ L1 ↪ L2. If α ∈ L2, then α is algebraic
over K and hence algebraic over ϕ(L1), but ϕ(L1) ≅ L1 which is algebraically closed. If we consider the
sequence of inclusion K ⊆ ϕ(L1) ⊆ L2, it must be the case that α ∈ ϕ(L1), i.e. L1 ≅ L2.

12 Artin’s Theorem and Invariant Theory

Theorem 12.1 (Artin’s Thm on invariants). Let L be a field and G ⊆ Aut(L) a finite subgroup. Then
L/LG is a finite Galois extension with Galois group G. In particular [L ∶ LG] = ∣G∣.

Proof. Let K = LG and α ∈ L. Let f = ∏
n
i=1(X − αi) where α1, ..., αn are the distinct elements of

{σ(α) ∶ σ ∈ G}. Then σ(f) = f for all σ ∈ G, so f ∈ K[X]. This shows that α is algebraic and separable
over K, so L/K is algebraic and separable, and [K(α) ∶K] ≤ ∣G∣ for all α ∈ L. Pick α ∈ L s.t. [K(α) ∶K]
is maximal, then we claim that L =K(α).

proof of claim: Let β ∈ L. Then K(α,β)/K is finite and separable. By the theorem of primitive element,
K(α,β) =K(θ) for some θ ∈ L, but now [K(θ) ∶K] ≤ [K(α) ∶K]. Since it is also true that K(α) ⊆K(θ),
we must have β ∈K(α).

Now, ∣Aut(L/K)∣ ≤ [L ∶ K] = [K(α) ∶ K] ≤ ∣G∣. Also, G ⊆ Aut(L/K), so ∣Aut(L/K)∣ = [L ∶ K], so
L/K is Galois, so G = Aut(L/K) = Gal(L/K).

Example 12.2. Let L = C(X1,X2). Define σ, τ ∈ Aut(L) by (σf)(X1,X2) = f(iX1,−iX2) and
(τf)(X2,X2) = f(X2,X1). Let G = ⟨σ, τ⟩. In fact, G ≅ D8. We observe that X1X2,X

4
1 + X

4
2 ∈ L

G

so that C(X1X2,X1 +X
4
2) ⊆ LG ⊆ L. By Artin’s theorem, L/LG is Galois and [L ∶ LG] = 8. Observe

that f(T ) = (T 4 −X4
1)(T

4 −X4
2) has coefficients in C(X1X2,X

4
1 +X

4
2), so [L ∶ C(X1X2,X

4
1 +X

4
2)] ≤ 8,

so LG = C(X1X2,X
4
1 +X

4
2).

Suppose R is a ring and G ⊆ Aut(R) is a subgroup. Invariant theory seeks to describe the subring
RG = {x ∈ R ∶ ∀σ ∈ R, σ(x) = x}. This motivates Hilbert’s basis theorem. It’s also important in algebraic
geometry (the quotient of an algebraic variety by a group action).

Example 12.3. G =D8 acts on C[X1,X2] as in the previous example. Then C[X1,X2]
G = C[X1X2,X

4
1+

X4
2 ]. Note that C[X1,X2]

G is spanned by {Xr
1X

s
2 +X

s
1X

r
2 ∶ r ≡ s (mod 4)} as a C-vector space.
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Example 12.4. Note that if k is a field, L = k(X1, ...,Xn). G = Sn acts on L. LG contains elementary
symmetric polynomials. Symmetric functions implies that RG = k[s1, ..., sn], where R = k[X1, ...,Xn]
and si elementary symmetric polynomials.

Theorem 12.5. In the previous example, LG = k(s1, ..., sn).

Proof one: Suppose f/g ∈ LG for some f, g coprime. Then σ(f) = cσf and σ(g) = cσg for some cσ ∈ k
×.

Since G is finite of order N = n!, we have f = σN(f) = cNσ f , so cNσ = 1. Therefore fgN−1 and gN are

elements of RG, so f/g = fgN−1

gN ∈ k(s1, ..., sn).

Proof two: Define f(T ) = ∏
n
i=1(T −Xi) = T − s1T

n−1 + ⋯ + (−1)nsn ∈ k(s1, ..., sn)[T ] which has degree
n in T . Then L is a splitting field of f over k(s1, ..., sn). We have [L ∶ k(s1, ..., sn)] ≤ n!. By Artin’s
theorem, [L ∶ LG] = n!, so LG = k(s1, ..., sn).

Remark 17. We’ve shown that the Galois group of a generic (monic) polynomial of degree n is Sn.
Exercise: show that for all finite group G there exists a finite Galois extension whose Galois group is G.
Note that it may not be possible to specify K in advance. For instance, the case K = Q (inverse Galois
problem) is unsolved.

Corollary 12.6. Let Sn act on L = k(X1, ...,Xn) by permuting variables. If char(k) ≠ 2, then LAn =
k(s1, ..., sn, δ), where δ = ∏i<j(Xi −Xj).

Proof. Note that [LAn ∶ k(s1, ..., sn)] = 2. Have σ(δ) = sgn(σ)δ for all σ ∈ Sn. Inparticular, δ ∈ LAn and
δ ∉ LSn , so LAn = k(s1, ..., sn, δ).

Remark 18. One can also show that RAn = k[s1, ..., sn, δ], where R = k[X1, ...,Xn]. [Idea: If f ∈ RAn ,
pick σ ∈ Sn ∖An. Write f = 1

2
(f + σ(f) + f − σ(f)). Then f − σ(f) is divisible by δ.]

Theorem 12.7 (Fundamental Theorem of Algebra). We know what the statement is.

Proof. We will make use of the following facts

(i) Every poly f ∈ R[X] of odd degree has a root in R

(ii) Every quadratic polynomial in C[X] has a root.

(iii) Every group of order 2n, n ≥ 1, has a subgroup of index 2.

Suppose L/C is a non-trivial finite extension. Replacing L by its Galois closure over R, we may
assume L/R is Galois. Let G = Gal(L/R). Let H ≤ G be a Sylow 2-subgroup. Then [LH ∶ R] = [G ∶ H]
is odd. So if α ∈ LH , then [R(α) ∶ R] is odd. Hence, α ∈ R by (i). Therefore LH = R and G = H, so G
is a 2-group. Let G1 = Gal(L/C) ≤ Gal(L/R) = G, then G1 is a (non-trivial) 2-group. Take a subgroup
G2 ≤ G1 of index 2, then [LG2 ∶ C] = 2, which contradicts (ii).
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