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1 Normed spaces & linear operators

Definition 1.1. Let X be a vector space over R or C (usually over R). A norm on X is a function
∥ • ∥ : X → R≥0 s.t.

1. ∥x∥ = 0 iff x = 0;

2. ∥λx∥ = |λ|∥x∥ for all x ∈ X, λ scalar;

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X (Triangle inequality)

A normed space is a pair (X, ∥ • ∥), where X is a vector space and ∥ • ∥ is a norm.

Example 1.2. 1. lnp , X = Rn, ∥x∥ = ∥x∥p = (
∑

i |xi|p)1/p. (Triangle inequality follows from
Minkowski’s inequality)

2. ln∞, X = Rn, ∥x∥ = ∥x∥∞ = maxi |xi|.

Remark 1. Often useful to consider the unit ball B = B(X). B completely determines the norm by
∥x∥ = inf{t > 0 : x ∈ tB}. B is always convex by triangle inequality. In fact, can check that if B ⊆ Rn

is a closed, bounded, convex, symmetric (x ∈ B =⇒ −x ∈ B), and is a nbd of 0, then B defines a norm
via the formula above, and B is the unit ball of that norm.

Let S be the set of scalar sequences made into a vector space under pointwise operations.

Example 1.3. 1. lp = {x ∈ S :
∑

i |xi|p < ∞} with norm ∥x∥ = ∥x∥p = (
∑

i |xi|p)1/p.

2. l∞ = {x ∈ S : supn |xn| < ∞}, ∥x∥∞ = supn |xn|.

3. C0 = {x ∈ S : xn → 0} with norm ∥ • ∥∞.

Definition 1.4. A Banach space is a complete normed space.

1.1 The Hölder & Minkowski Inequality

Lemma 1.5. For 1 ≤ p < ∞, x 7→ xp is convex.

Theorem 1.6 (Minkowski’s inequality). Let 1 ≤ p < ∞, x, y ∈ lp, then x + y ∈ lp and ∥x + y∥p ≤
∥x∥p + ∥y∥p.

Proof. First assume ∥x∥p, ∥y∥p ≤ 1. For each n, we have

|λxn + (1− λ)yn|p ≤ λ|xn|p + (1− λ)|yn|p

by the preceding lemma. So we have the same inequality of partial sums. Taking limit, we see that
λx + (1 − λ)y ∈ lp and ∥λx + (1 − λ)y∥p ≤ λ∥x∥p + (1 − λ)∥y∥p. For general x, y ∈ lp, wlog assume
x, y ̸= 0 as otherwise the inequality is trivial. Apply the aove to the normalized vectors, we get∥∥∥∥∥ ∥x∥p

∥x∥p + ∥y∥p
x

∥x∥p
+

∥y∥p
∥x∥p + ∥y∥p

y

∥y∥p

∥∥∥∥∥
p

≤ 1

, which implies the claimed inequality after some manipulation.
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Definition 1.7. 1 ≤ p < ∞, the conjugate index to p is the q s.t. 1 < q < ∞ with 1/p+ 1/q = 1.

Lemma 1.8. If p, q are conjugate, and a, b ≥ 0, then ab ≤ ap

p + bq

q .

Proof. Can either do Legendre transform or substitute x = ap, y = bp and use concavity of log.

Theorem 1.9 (Hölder’s inequality). If p, q are conjugate, x ∈ lp, y ∈ lq, then (xnyn) ∈ l1 with
∥(xnyn)∥1 ≤ ∥x∥p∥y∥q.

Proof. WLOG, assume ∥x∥p = ∥y∥q = 1. For all n, |xnyn| ≤ |xn|p
p + |yn|q

q , so (xnyn) ∈ l1 with

∥xnyn∥ ≤ ∥x∥p
p

p +
∥y∥q

q

q = 1/p+ 1/q = 1.

Example 1.10. • C([0, 1]) with the sup norm ∥f∥∞ is complete (uniform convergence). More gen-
erally, C(K) is with sup norm is complete if K is compact Hausdorff.

• C([0, 1]) with the 1-norm ∥f∥1 =
∫ 1

0
f is incomplete. Still incomplete with p-norm (

∫ 1

0
|f |p)1/p.

• C1([0, 1]) of ctsly diff function with the sup norm ∥ • ∥∞ is incomplete. However with a new norm
∥f∥′ = ∥f∥∞ + ∥f ′∥∞, the space is complete (exercise)

The following result suggests that for a norm to be complete, one often needs to take into account
the structure of the space.

∆ = D1 ⊆ C the closed unit disk. A(∆) be the space of functions which are cts on ∆ and analytic on
∆◦, then A(∆) equipped with ∥f∥∞ is complete (c.f. complex analysis, Montel’s theorem, the uniform
limit of holomorphic functions is holo’c).

Remark 2. In lp, (1 ≤ p ≤ ∞). Write en = (0, ..., 0, 1, 0, ...) for the vector which is 1 at the nth place. The
linear span of {en} is F = {x ∈ lp : ∃N ≥ 0,∀n ∈ N, xn = 0} ⊊ lp. However, we get close for 1 ≤ p < ∞
since the closed linear span (the closure) of en is lp. To see this note that ∀x ∈ lp,

∑k
n=1 xnen → x as

k → ∞.
The property above is false for l∞, e.g., take (1, 1, ...). In fact the closed linear span in this case is

C0.
Also note that Subspaces need not be closed, e.g. F ⊆ l1 (even if F is dense).

Definition 1.11. A topological space X is separable if it has a countable dense subset.

Example 1.12. lp (1 ≤ p < ∞) is separable (take finite rational sequences). l∞ is not separable
(exercise).

1.2 Linear Operators

Definition 1.13. X,Y normed, a linear map T : X → Y is an operator if it’s cts.

Proposition 1.14. X,Y normed, T : X → Y linear, then TFAE

1. T cts

2. T cts at 0

3. ∃k s.t. ∥T∥ ≤ k∥x∥ for all x ∈ X. (T is bounded)

Proof. 1 implies 2 is trivial. If 2 is true, then let B(Y ) be the unit ball in Y , which is a nbd of 0, so by
continuity at 0, there exists δ > 0 s.t. ∥x∥ < δ =⇒ ∥Tx∥ ≤ 1. Rearranging, get ∥Tx∥ ≤ ∥x∥/δ for all
x ∈ B(Y ), but then linearity allows us to say the same thing for all x ∈ X. To prove 3 implies 1, we
simply note that Lipschitz condition implies continuity.

Definition 1.15. For bounded T : X → Y , the operator norm of T is ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}.

Then for all x, ∥Tx∥ ≤ ∥T∥∥x∥.
We write L(X,Y ) for the set of cts linear maps X → Y . In some sources, the notation B(X,Y ) is

used.

Remark 3. One can check that the operator norm is indeed a norm on L(X,Y ).

Proposition 1.16. If S : X → Y , T : Y → Z are operators, then T ◦ S is an operator and ∥TS∥ ≤
∥T∥∥S∥.
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Proof. Direct computation.

Example 1.17. 1. T : lnp → lnp defined by projecting onto the first two coords. ∥T∥ = 1.

2. Right shift. This is an injective isometry, but not surjective.

3. Left shift. This is surjective but not injective.

4. p, q conj. For x ∈ lp, y ∈ lq, write x.y for
∑

xnyn which conv. abs. by Hölder. Can then define
ϕy : lp → R by x 7→ x.y. Have ϕy ∈ L(lp,R) and ∥ϕy∥ ≤ ∥y∥q.

5. Take (F, ∥ • ∥1) and deifne T : F → R, x 7→
∑

nxn. T is linear but not cts.

6. T : l1 → l2, x 7→ x. Then ∥T∥ = 1 as
∑

|xn| ≤ 1 =⇒ ∀n, |xn| ≤ 1 =⇒
∑

|xn|2 ≤ 1 =⇒ ∥T∥ ≤
1. T is not surjective but the image contains F , so im(T ) is dense. It is not closed so incomplete.

Definition 1.18. X,Y normed.

• The dual X∗ = L(X,R) with operator norm

• X → Y is an isomorphism if it’s a linear homeo, i.e., ∃c, d > 0 s.t. c∥x∥ ≤ ∥Tx∥ and ∥Tx∥ ≤ d∥x∥.

• X → Y is an isometric isomorphism if it’s an isometry.

• For isomorphic X,Y , the Banach-Mazur distance from X to Y is d(X,Y ) = infT iso ∥T∥∥T−1∥.

• Two norms are equivalent if they induce the same topology, i.e., the identity is a homeo, i.e., two
norms are Lipschitz equivalent. In particular, if two norms are equiv, and one of them is complete,
then both are complete.

Note that for equivalent norms, c∥x∥1 ≤ ∥x∥2 ≤ d∥x∥1, i.e., d−1B1 ⊂ B2 ⊂ c−1B.

Remark 4. • On C[0, 1], ∥ • ∥∞ is complete, ∥ • ∥1 is incomplete, so they are not equiv. The map
id : (C[0, 1], ∥ • ∥∞) → (C[0, 1], ∥ • ∥1) is a cts linear bijection whose inverse is not cts.

• On F , ∥ • ∥1 and ∥ • ∥2 are not equiv. Take, x = e1 + ...+ en, then ∥x∥1 = n, ∥x∥2 =
√
n.

• (Tn) a sequence in L(X,Y ) and Tn → T in operator norm, then Tn → T pointwise. The converse
is false: Tn : l1 → R, x 7→ xn. Then ∥Tn∥ = 1 for all n, but we do have pointwise convergence.

Theorem 1.19. X,Y normed, Y complet. Then L(X,Y ) is complete with respect to the operator norm.

Proof. Given a Cauchy sequence (Tn) in L(X,Y ), Pointwise, have ∥Tnx − Tmy∥ ≤ ∥Tn − Tm∥∥x∥, so
pointwise Cauchy. Since Y is complete, the pointwise limit exists. Can check that the pointwise limit T
is a linear map. It suffices to prove boundedness. Given ϵ > 0, there exists N s.t. ∥Tm − Tn∥ ≤ ϵ for all
m ≥ n ≥ N . Let m → ∞, we get ∥Tx− Tnx∥ ≤ ϵ∥x∥ for all x and n ∈ N . So for all x, have

∥Tx∥ ≤ (ϵ+ ∥Tm∥)∥x∥

Note that ∥Tm∥ is bounded as the sequence is Cauchy, so we have a uniform bound, so T ∈ L(X,Y ).
Now, the preceding argument essentially says that ∥T − Tn∥ ≤ ϵ for all n ≥ N .

Corollary 1.20. If X is a complete norm space, then X∗ is complete.

We want to investigate the dual of lp. Let 1 < p, q < ∞ be conjugate. For each y ∈ lq, we
defined ϕy ∈ l∗p. We know that ∥ϕy∥ ≤ ∥y∥q. We construct xn = sgn(yn)|yn|q/p, then (xn) ∈ lp with

∥x∥p = ∥y∥q/pq . ϕy(x) =
∑

|yn|q/p+1 =
∑

|yn|q = ∥y∥q. We see that ∥ϕy∥ = ∥y∥q.

Theorem 1.21. Let 1 < p, q < ∞ be conjugate. Then θ : lq → l∗p, y 7→ ϕy is an isometric isomorphism.

Proof. This map is obviously linear. It’s norm preserving so obviously continuous and injective. To show
surjectivity, consider T ∈ l∗q and define the following sequences (important trick!) yn = Ten.

xn =

{
sgn(yn)|yn|q/p n ≤ N

0 o/w
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Then x ∈ lp and Tx =
∑N

1 |yn|q/p+1 =
∑N

1 |yn|q, so

N∑
1

|yn|q ≤ ∥T∥x∥p = ∥T∥

(
N∑
1

|yn|q
)1/p

so

∥T∥ ≥

(
N∑
1

|yn|q
)1/q

Let N → ∞, we see that y ∈ lq. By linearity and continuity, T = ϕy on F = lq.

Remark 5. 1. Same argument shows that l∗1 = l∞ and C∗
0 = l1 using the density of ⟨en : n ∈ N⟩.

However, it wouldn’t show l∗∞ = l1. In fact, there exists T ∈ l∗∞ not of the form ϕy. The proof of
this fact is beyond the scope of this course.

2. Each lp (1 ≤ p ≤ ∞) is complete and each is a dual space

3. Cannot have X∗ = {0} by Hahn-Banach theorem (Any cts functional on a subspace extend to a
continuous functional on the whole space).

1.3 Finite Dimensional Spaces

Theorem 1.22. Any two norms on a finite dimensional vector space are equivalent.

Proof. Will show that any norm on R2 is equiv to ∥ − ∥∞. For x ∈ Rn, ∥x∥ ≤
∑

∥xien∥ =
∑

|xi|∥ei∥ ≤
n(maxi ∥ei∥)∥x∥∞.

Conversely, consider f : S → R, where S = {x ∈ Rn : ∥x∥∞ = 1}, then f is continuous on compact
set so there eixsts δ > 0 s.t. ∥x∥∞ = 1 =⇒ ∥x∥ ≥ δ, so if 0 ̸= x ∈ Rn, then x = ∥x∥∞x̂ and
∥x∥ ≥ δ∥x∥∞.

Corollary 1.23. X,Y normed and dimX < ∞, then every lienar map T : X → Y is cts.

Proof. Define norm on X yb ∥x∥′ = ∥x∥ + ∥Tx∥, so there exists c s.t. ∥x∥′ ≤ c∥x∥ by equivalence of
norm, so ∥Tx∥ ≤ c∥x∥ by unwinding a bit.

Corollary 1.24. X,Y finite dim normed spaces of with dimX = dimY . Then X,Y are isomorphic.

Corollary 1.25. 1. Y normed finite dim vec space, then Y complete;

2. X normed, then if Y ⊂ X is a finite dim subspace then Y is closed.

Corollary 1.26. If X is a finite dim normed vec space then Bx is compact (being closed and bounded
in 2-norm).

Note that the unit ball in lp is not compact since ∥ei − ej∥ ≥ 1 for all i, j.
Define d(x, Y ) = inf{d(x, y) : y ∈ Y } as the distance from x to a closed subspace Y . Note that

d(x, Y ) = 0 iff x ∈ Y (closed).

Proposition 1.27 (Riesz’s lemma). If X is normed and Y a proper closed subspace of X, then for all
ϵ > 0, there exists x ∈ X with ∥x∥ = 1 s.t. d(x, Y ) ≥ 1− ϵ. Moreover, if dimX < ∞, then ∃x ∈ X s.t.
∥x∥ = 1 with d(x, Y ) = 1.

Proof. Let ϵ > 0 be given. Choose x ∈ X s.t. x ∈ Y and ∥x∥ = 1. Pick y ∈ Y with ∥x − y∥ ≤
(1 + ϵ)d(x, Y ). Define z = x−y

∥x−y∥ . Can check that for any y′ ∈ Y , we have

z − y′ =
x− y − ∥x− y∥y′

∥x− y∥
≥ d(x, Y )

∥x− y∥
≥ 1

1 + ϵ

For the second part, note that d(x, Y ) is a cts function BX → R. The domain is compact if X is finite
dimensional, so attains its lower bound.

Theorem 1.28. X infinite dim normed space. Then there eixsts a seq. (xn) in X with ∥x∥ = 1 for all
n and ∥xn − xm∥ ≥ 1 for all m ̸= n. In particular, BX is not compact.

Proof. Choose x1 ∈ X with unit norm. Inductively set Y = ⟨x1, ..., xn⟩ and X ′ = ⟨x1, ..., xn, x⟩ for any
x ̸∈ Y . By Riesz’s lemma, there exists xn+1 ∈ X ′ s.t. ∥xn+1∥ = 1 and d(xn+1, Y ) = 1.
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1.4 Compact Operators

Definition 1.29. X,Y normed. A linear operator T : X → Y is compact if T (BX) is compact.

Example 1.30. For instance, if T has finite rank, then T (BX) is closed and bounded in finite dimensional
space hence compact.

If X is infinite dimensional, then idX is not compact due to the preceding theorem.

Remark 6. 1. Compact implies cts.

2. Note that if Y is complete, then T is compact if and only if T (BX) is totally bounded.

3. T : X → Y is compact iff for any (xn) in BX , there exists a subsequence (xni
) with T (xni

)
convergent.

Proposition 1.31. X,Y normed. Y complete. Then {compact operators} is a closed subspace of
L(X,Y ).

Proof. Take a sequence (xn) in BX . then can find a subsequence whose image under S converges. Pass
to some subsequence of this subsequence so that the image under T also converges, so if S, T are compact
then so is S + T . This implies that the space of compact operators form a subspace.

Consider a sequence Tn → T for Tn compact. Given ϵ > 0, choose n with ∥Tn−T∥ < ϵ. Since Tn(BX)
is totally bounded, we have Tn(BX) =

⋃m
i=1 B(Tn(xi), ϵ) for some xi. So, T (BX) ⊆

⋃
i B(Tn(xi), 2ϵ) and

T (BX) ⊆
⋃

i B(T (xi, 3ϵ)), which gives total boundedness.

In particular, the limit of finite rank operators is compact.

Example 1.32. For fixed 1 ≤ p ≤ ∞, the projection onto the nth coord pn is a finite rank operator
with ∥pn∥ = 1. p =

∑
n pn/n

2 converges as it’s Cauchy, then p is compact but not of finite rank.

Proposition 1.33. X,Y, Z normed, S ∈ L(X,Y ), T ∈ L(Y, Z), then

1. S compact =⇒ T ◦ S compact

2. T compact =⇒ T ◦ S compact.

Proof. To prove the first claim, consider a sequence (xn) in BX , then there is a subsequence with Sxni

convergent, so TSxni
is convergent by continuity.

To prove the second claim. Note that for any sequence (xn) in BX , Sxn is bounded, so TSxni

converges for some subsequence as T is compact.

We have seen the map T : l1 → l2 with dense image but not all of l2. For instance x(1/
√
n, ..., 1/

√
n, 0, 0, ...)

then ∥x∥2 = 1 ∥x∥1 =
√
n.

Theorem 1.34 (Open mapping lemma). X,Y normed. X complete, then T ∈ L(X,Y ). Suppose
T (BX) ⊃ BY , then

1. ∀y ∈ Y, ∃x ∈ X s.t. Tx = y and ∥x∥ ≤ 2∥y∥ (In particular, T is surjective.)

2. Y complete.

Remark 7. 1. T (BX) ⊃ BY implies that the image of BX is dense in BY , i.e., ∀y ∈ BY ,∀ϵ > 0,
∃x ∈ BX with ∥Tx− y∥ < ϵ.

2. The proof would also show that for all y ∈ Y , there eixsts x with ∥x∥ ≤ |1 + ϵ|∥y∥ for any fixed ϵ.

3. We say that T is open if the image of any open set is open, i.e., T (BX) is a nbd of 0, i.e.,
T (BX) ⊃ 1

kBY for some k ∈ N, i.e., ∀y ∈ Y,∃x ∈ X with Tx = y and ∥x∥ ≤ k∥y∥. Therefore, open
mapping lemma says that if im(BX) is desne in BY , then T is open.

Proof. 1. Given y ∈ Y with unit norm. Seek x ∈ X with Tx = y and ∥x∥ ≤ 2. T (BX) is dense in
BY , so ∃x1 ∈ X s.t. ∥x1∥ ≤ 1 and ∥y−Tx1∥ ≤ 1/2. Also, T ( 12BX) is dense in 1/2BY , so ∃x2 ∈ X
with ∥x2∥ ≤ 1/2 s.t. ∥y − T (x1 + x2)∥ ≤ 1/4. Continue, obtain x =

∑
xn which is Cauchy, hence

convergent, and ∥y − Tx∥ = 0, so Tx = y.

2. Given (yn) Cauchy in Y . WLOG assume ∥yn − yn−1∥ ≤ 2−n (by passing to a subsequence if
necessary). For each n ≥ 2, choose xn ∈ X s.t. ∥xn∥ ≤ 2−n+1 with Txn = yn − yn+1. Also, choose
x1 ∈ X with Tx1 = y1 (surjectivity). Thus T (x1 + ...+ xn) = yn. Put x =

∑
xn which is Cauchy

hence convergent. Then Tx = limn T (
∑n

1 xi) = lim yn, so yn converges.
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1.5 New Spaces From Old

Definition 1.35 (Direct sum). X⊕pY (1 ≤ p ≤ ∞), where ∥(x, y)∥p = (∥x∥p+∥y∥p)1/p and ∥(x, y)∥∞ =
sup(∥x∥, ∥y∥).

These norms are all equivalent, so we usually write X ⊕ Y . If X,Y are Banach then so is X ⊕ Y .
X,Y are always closed subspaces of X ⊕ Y .

Definition 1.36 (Quotient). X normed, N ≤ X a closed linear subspace. We can define the quotient
space X/N . Define ∥z∥ = inf{∥x∥ : x ∈ X,π(x) = z}, where π : X → X/N is the canonical projection
map (continuous in this norm). If X is Banach, then so is X/N .

Proof. The only non-trivial property to check is positivity. If ∥z∥ = 0 for some z ∈ X/N , then there
exists x1, x2, ... ∈ X with π(xn) = z and ∥xn∥ → 0. Then let π(x) = z, we have xn → 0 and xn−x ∈ N ,
so x ∈ N as N is closed, so z = 0.

Clear that the projection is cts as ∥π(x)∥ ≤ ∥x∥ by definition.
If X is Banach, then ∀z ∈ X/N with ∥z∥ ≤ 1, there exists x ∈ X with ∥x∥ < 1 with π(x) = z, so

π(BX) is dense in BX/N . Done by open mapping lemma.

Definition 1.37 (Completion). X normed, there exists a completion of X defined as

X̃ = {Cauchy sequences in X}/∼

where (xn) ∼ (yn) iff xn− yn → 0. This is naturally a vector space equipped with the norm ∥[(xn)]∥X̃ =

lim ∥xn∥. Then X̃ is complete and X is a dense subspace of X̃ given by embedding x 7→ (x, x, x, ...).

Warning: 1st iso fails, e.g., l1 → l2, x 7→ x is injective, but the image is not complete.

2 Baire Category Theorem

Theorem 2.1 (Baire Category Theorem). X non-empty complete metric space and O1, O2, ... a sequence
of dense open sets. Then

⋂
n≥0 On ̸= ∅.

Proof. O1 ̸= ∅, so ∃B(x1, ϵ1) ⊆ O1 for some x1 and ϵ < 1. O2 is dense, so can find B(x2, ϵ) ⊆
B(x1, ϵ1) ∩ O2 for some x2 and ϵ2 < 1/2. Continue, get a nested sequence of closed balls. We have
ϵn → 0 and B(xn, ϵn) ⊆ On. (xn) is Cauchy so converges by completeness, so xn → x ∈

⋂
n On.

Remark 8. Cannot omit “dense” (e.g., (0, 1), (2, 3) in R) or “open” (e.g. Q,R \ Q ⊆ R), or “complete”
(e.g. On = Q \ {qn}, where q1, ... is an enumeration of rationals in Q.)

The exact same proof shows that
⋂

n On is dense in X.

Note that O open dense iff Oc closed and has empty interior.

Theorem 2.2 (BCT’). X non-empty complete metric space. F1, F2, ... closed in X with
⋃

n Fn = X
Then some X has non-empty interior.

Definition 2.3. A ⊂ X (metric) is nowhere dense (ND) if it’s not dense in any open ball, i.e., A◦ = ∅.

It is clear that A ND iff A ND. If A is closed, then A ND iff A contains no open ball.

Theorem 2.4 (BCT”). X non-empty complete metric space. A1, ... ND subsets of X, then
⋃

n An ̸= X.

Definition 2.5. A ⊂ X (metric) is meager if A =
⋃

n An, An ND for all n. (Countable union of ND
subsets)

Then BCT” implies that X is not a meager subset of X.
Note that there exists uncountable ND subset of [0, 1), i.e., the Cantor set {

∑
n an3

−n : an = 0 or 2}.
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2.1 Applications of BCT

Proposition 2.6 (Osgood’s Theorem). If (fn) is a sequence of cts functions on [0, 1] which is pointwise
bounded, then there exists a < b s.t. fn is unif. bounded on (a, b) ⊆ [0, 1].

Proof. Define En = {x ∈ [0, 1] : ∀i, |fi(x)| ≤ n}, then
⋃

n En = [0, 1] and En is closed for all n, so some
En has non-empty interior.

Theorem 2.7 (Principle of uniform boundedness). X Banach, Y normed. Let T1, T2, ...,∈ L(X,Y ). If
(Tn) is pointwise bounded. Then Tn are uniformly bounded.

Proof. Define En{x ∈ X : ∀i, ∥Ti(x)∥ ≤ n} (closed, cover X), so there exists B(x, ϵ) ⊆ En for some
n, x, ϵ. So for any y ∈ X s.t. ∥y∥ < ϵ, x, x + y ∈ B(x, ϵ). So ∀i, ∥Tiy∥ = ∥Ti(x + y) − Ti(x)∥ ≤ 2n, so
∥Ti∥ ≤ 2n/ϵ.

Theorem 2.8 (Banach-Steinhaus Theorem). X Banach, Y normed, T1, T2, ... ∈ L(X,Y ) s.t. Tn → T
pointwise. Then T ∈ L(X,Y ) (linear and cts)

Proof. Linearity is trivial. Need to show continuity. ∀x ∈ X, Tnx → Tx so Tn is pointwise bounded
hence uniformly bounded by principle of uniform boundedness. So ∃M s.t. ∥Tn∥ ≤ M for all n, so
∥Tnx∥ ≤ ∥Tn∥∥x∥ ≤ M∥x∥. Let n → ∞, we see that ∥Tx∥ ≤ M∥x∥.

Theorem 2.9 (Open Mapping Theorem). X,Y Banach, T ∈ L(X,Y ) surjective. Then T is an open
map [∃R s.t. ∀y ∈ Y ∃x ∈ X s.t. Tx = y with ∥x∥ ≤ R∥y∥.]

Proof. T is surjective, so
⋃

n T (nBX) = Y which each T (nBX) closed. Baire =⇒ that some T (nBX)
contains a ball B(y, ϵ). WLOG, n = 1, so T (BX) is dense in B(y, ϵ). Now for all z ∈ Y with ∥z∥ < ϵ, we
have y+ z, y− z ∈ B(y, ϵ), so there exists x, x′ ∈ BX with ∥Tx− (y+ z)∥ < δ and ∥Tx′ −T (y− z)∥ < δ,

which implies that x−x′

2 ∈ BX and ∥T ((x−x′)/2)−z∥ < δ/2+δ/2 = δ. So T (BX) is dense in B(0, ϵ). By
open mapping lemma (applied to the operator T/ϵ), there exists x ∈ X with Tx = ϵy with ∥x∥ ≤ 2∥y∥,
i.e., T (x/ϵ) = y and ∥x/ϵ∥ ≤ 2

ϵ ∥y∥.

Corollary 2.10 (Inversion Theorem). X,Y Banach. T ∈ L(X,Y ) bijective, Then T is an isomorphism

Proof. T surjective, so T is open by open mapping thm, so ∃k s.t. ∀y ∈ Y , ∥T−1y∥ ≤ k∥y∥, so T−1 is
cts.

Corollary 2.11 (Comparability theorem). Let ∥ ∥1, ∥ ∥2 be complete norms on V . If ∃c > 0 s.t.
∀x, ∥x∥2 ≤ c∥x∥1. Then these two norms are equivalent.

Proof. Note that id : (V, ∥ ∥1) → (V, ∥ ∥2) is a continuous bijection. Done by inversion theorem.

Theorem 2.12 (Closed graph theorem (CGT)). X,Y Banach, T ∈ L(X,Y ). Then T is cts iff Graph(T )
is closed.

Remark 9. This has an important consequence. T has closed graph ⇔ If (xn, Txn) → (x, y), then
y = Tx. ⇔ If xn → x and Txn → y, then y = Tx. ⇔ If xn → 0, Txn → y, then y = 0.

CGT =⇒ to show T cts, it suffices to show that if xn → 0 and Txn → y (can assume the existence
of this limit) then y = 0.

Proof. “⇒”: Trivial.
“⇐”: Let G(T ) denote the graph of T . G(T ) is closed in X × Y (with ∥ ∥1 say) by assumption, so

G(T ) is complete. Define S : X → G(T ), x 7→ (x, Tx) WTS that S is bounded. Clearly S is a bijection
and S−1 is cts (∥x∥ ≤ ∥x∥+ ∥Tx∥), so we are done by inversion theorem.
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2.1.1 Existence of a cts nowhere differentiable function

f ∈ C[0, 1] is diffrentiable at x iff f(x+t)−f(x)
t → 0 as t → 0. In particular the difference quotient is

bounded for all t ̸= 0 small. Define En = {f ∈ C[0, 1] : ∃x, ∀t, |(f(x+ t)− f(x))/t| ≤ n}
Claim: En is closed: Suppose (fi) ∈ En with fi → f unif. For each i, there exists xi s.t.

|(fi(xi+ t)−fi(xi))/t| ≤ n for all t. By passing to a convergent subsequence if necessary, we may assume
xi → x as i → ∞ for some x ∈ [0, 1]. Then have

fi(xi + t)− fi(xi)

t
− f(x+ t)− f(x)

t

for all t. Thus, |(f(x+ t)− f(x))/t| ≤ n for all t, so f ∈ En.
Claim: En is nowhere dense (ND). Given f ∈ En and ϵ > 0, we need g ∈ B(f, 3ϵ) with g ̸∈ En.

By uniform continuity of f , we can find δ > 0 s.t. |x− y| < δ =⇒ |f(x)− f(y)| < ϵ. Take the following
function. to be g.

Then we are done by Baire.

3 Spaces of Continuous Functions

3.1 Existence of Continuous Functions

Definition 3.1. A Hausdorff space X is normal if any two disjoint closed sets can be separated by two
disjoint open sets.

Proposition 3.2. Compact Hausdorff =⇒ Normal.

Proof. Part IB Analysis and Topology ES3 Q8.

Theorem 3.3 (Urysohn’s lemma). Let X be normal, A,B ⊆ X be disjoint closed sets. Then ∃ a cts
function f : X → [0, 1] s.t. f ≡ 0 on A and f ≡ 1 on B.

Remark 10. • Usually use normality in the following equivalent form. For A ⊆ V where A is closed
and V is open, there exists an open U with A ⊆ U and Ū ⊆ V .

• If X is Hausdorff and has the property in Urysohn lemma, then X is normal. Take f−1({1/4})
and f−1({3/4}), so this characterizes normal spaces.

• This is trivial for metric spaces. Take f(x) = d(x,A)
d(x,A)+d(x,B) .

• If K is compact Hausdorff (and infinite), then C(K) is infinite dimensional. Pick an infinite
sequence (xn) with distinct terms (possible as the set is infinite). For n ≥ 2, pick fn ∈ C(K) with
fn = 0 on {x1, ..., xn} and fn = 1 on {xn+1}. It’s easy to see that {fn} is an L.I. set.

Proof. Let A,B ⊆ X be disjoint closed sets. Let V = Bc. Find O1/2 open s.t. A ⊆ O1/2 and Ō1/2 ⊆ V .
Continue, find O1/4, O3/4 with A ⊆ O1/4, Ō1/4 ⊆ O1/2 and Ō1/2 ⊆ O3/4, Ō(3/4) ⊆ V . Continue, we get
Oq for all dyadic rational q ∈ (0, 1]. The family {Qq} has the properties that

• A ⊆ Oq ⊆ V for all q;

• Ōq ⊆ Or if q < r;
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• Define O1 = X.

Define f(x) = inf{q : x ∈ Oq}. To show continuity, it is enough to consider the preimages of (−∞, a)
and (−∞, a). for a ∈ (0, 1).

• f(x) < a ⇔ x ∈ Oq for some q < a, ⇔ x ∈
⋃

q<a Oq which is open;

• f(x) > a ⇔ x ̸∈ Oq for some q > a, i.e., x ̸∈ Ōr for some r > a ⇔ x ∈
⋃

r>a Ō
c
r open.

Theorem 3.4 (Tietze extension theorem). X normal, Y ⊆ X closed, f : Y → R bounded cts. Then f
extends to a cts function g : X → R with ∥g∥∞ = ∥f∥∞.

Remark 11. • The condition ∥g∥ = ∥f∥ is trivial. If g : X → R extends to f with ∥f∥ = 1, then the
map

g′(x) =


g(x) g(x) ∈ [−1, 1]

1 g(x) > 1

−1 g(x) < −1

also extends f ctsly.

• Y being closed is necessary, e.g., sin(1/x) on (0, 1] ⊆ [0, 1].

• Tietze extends the result of Urysohn lemma.

Proof. WLOG, ∥f∥ = 1. Let A = {x ∈ Y : f(x) < −1/3}, B = {x ∈ Y : f(x) > 1/3}. By
Urysohn, there exists a cts g1 : X → [−1/3, 1/3] with g1 = −1/3 on A and g1 = 1/3 on B. Note that
|f(x) − g1(x)| ≤ 2/3 for all x ∈ Y , so ∥f − g1∥∞ ≤ 2/3. Repeat the process with (f − g) in place of
f to obtain g2 : X → [−2/9, 2/9] s.t. ∥f − g1 − g2∥ ≤ (2/3)2. We thus get a sequence of cts functiosn
g1, g2, ... : X → R, s.t. ∥gn∥ ≤ 1

3 (
2
3 )

n−1 and ∥f −
∑n

i=1 gi∥∞ ≤ ( 23 )
n → 0 as n → ∞. Let g =

∑
i gi

which converges (being uniformly Cauchy). Have ∥g∥∞ ≤ 1 (can bound this by a geometric series), and
∥f − g|Y ∥ = 0, so f = g|Y .

Proof. One can also proceed slightly differently by applying Riesz’s lemma and open mapping lemma.
The image of the restriction map is dense, and each function in the image of some function of the same
sup norm. Open mapping lemma then implies that the restriction map is surjective.

3.2 Compactness in C(K)

Definition 3.5. For K compact Hausdorff and S ⊆ C(K), S is equicontinuous at x if

∀ϵ > 0, ∃ nbd N ∋ x s.t. ∀f ∈ S, y ∈ N =⇒ |f(x)− f(y) < ϵ

We say that S is equicontinuous if it is equicontinuous at x for every x ∈ K.

Example 3.6. {sin(n+ x) : n ∈ N} is equicontinuous since |x− x′| < ϵ =⇒ |f(x)− f(x′)| < ϵ (MVT
+ all derivatives ≤ 1). But {sin(nx) : n ∈ N} is not equicontinuous at 0.

Theorem 3.7 (Arzela-Ascoli). Let K be compact Hausdorff and S ⊆ C(K). Then S is compact if and
only if S is closed, bounded and equicontinuous.

Proof. ‘⇒’: If S is compact, then it is closed and totally bounded (hence bounded) by IB analysis and
topology. Let ϵ > 0 be given. Let x ∈ K. Since S is totally bounded, we can find f1, ..., fn ∈ S
s.t. S ⊆

⋃n
i=1 B(fi, ϵ). For each i, fi is continuous at x, so there exists open Ui with x ∈ Ui s.t.

∀y ∈ Ui, |fi(y) − fi(x)| < ϵ. Let U =
⋂n

i=1 Ui. Then U is an open nbd of x and ∀y ∈ U and ∀i,
|fi(y)− fi(x)| < ϵ. But then for any f ∈ S, we have ∥f − fi∥∞ < ϵ for some i. Therefore

∀y ∈ U, |f(y)− f(x)| ≤ |f(y)− fi(y)|+ |fi(y)− fi(x)|+ |fi(x)− f(x)| < 3ϵ

‘⇐:’: Conversely S is closed, so sufficient to prove total boundedness. Given ϵ > 0, we know that
S is equicontinuous, so ∀x ∈ K, there exists open Ux ∋ x s.t. ∀f ∈ S, ∀y ∈ Ux: |f(y) − f(x)| < ϵ.
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Then (Ux)x∈K is an open cover of K. By compactness of K, we can reduce to a fintie subcover, say

K = Ux1
∪ ... ∪ Uxn

. For f ∈ S define f̂ ∈ Rn by f̂ = (f(x1), ..., f(xn)). f̂ contains all the information

of f up to ϵ. Let Ŝ = {f̂ : f ∈ S} ⊆ Rn equipped with the uniform norm ∥ · ∥∞. Then Ŝ is
bounded as S is bounded. Hence Ŝ is totally bounded as we are in a finite dimensional space. Hence
Ŝ ⊆ B(f̂1, ϵ) ∪ ... ∪ B(f̂k, ϵ) for some f1, ..., fk ∈ S. Then ∀f ∈ S, we have f̂ ∈ B(f̂r, ϵ) for some r, i.e.,
|f(xi)− fr(xi)| < ϵ for all i. So ∀x ∈ K, we have x ∈ Uxi

for some i so

|f(x)− fr(x)| ≤ |f(x)− f(xi)|+ |f(xi)− fr(xi)|+ |fr(xi)− fr(x)| < 3ϵ

This means that f ∈ B(f1, 3ϵ) ∪ ... ∪B(fk, 3ϵ), i.e., S is totally bounded.

Remark 12. (i) Identical proof works for CC(K).

(ii) Above proof shows that S totally bounded iff S bounded and equicontinuous.

Arzéla-Ascoli s often useful in showing that operators to C(K) are compact.

Example 3.8 (Integral Operators). Let g ∈ C([0, 1]2) be fixed. For f ∈ C[0, 1] define T (f) ∈ C[0, 1] by

T (f)(x) =

∫ 1

0

g(x, t)f(t)dt

for x ∈ [0, 1]. (e.g. T (f)(x) =
∫ 1

0
e−xtf(t)dt) T : C[0, 1] → C[0, 1] is the integral operator with kernel g.

We observe that T is linear and continuous since |Tf(x)| ≤ ∥g∥∞∥f∥∞.
Claim: T is compact. Proof of claim: Need to show image of unit ball is equicontinuous. Given

ϵ > 0, there exists δ > 0 s.t.

|x− x′| < δ, t ∈ [0, 1] =⇒ |g(x, t)− g(x′, t)| < ϵ

(This is uniform convergence of g) So for f ∈ C[0, 1] with ∥f∥∞ = 1, we have

|x− x′| < δ =⇒ |Tf(x)− Tf(x′)| ≤
∫ 1

0

|g(x, t)− g(x′, t)||f(t)|dt ≤ ϵ

3.3 Density of C(K)

Let K be compact Hausdorff.

Definition 3.9. A subalgebra of C(K) is a subspace such that f, g ∈ A =⇒ fg ∈ A.

Example 3.10. (i) {f ∈ C[0, 1] : poly} (dense)

Definition 3.11. For f, g ∈ CR(K) define f ∨ g ‘f max/meet g’ by (f ∨ g)(x) = max(f(x), g(x)) and
f ∧ g ‘f min/join g’ by (f ∧ g)(x) = min(f(x), g(x)).

Note that ∧ and ∨ acts on CR(K). (They are called lattice operations.)

Definition 3.12. A sublattice of CR(K) is a subset A s.t. f, g ∈ A =⇒ f ∨ g, f ∧ g ∈ A.

Example 3.13. (i) {f ∈ CR(K) : ∀x, f(x) ≥ 0}

(ii) {f ∈ CR(K) : ∥f∥∞ ≤ 1}

(iii) {f ∈ CR[0, 1] : f poly} is not a sublattice.

Note that the concept of sublattice makes sense for CR(K) but not for CC(K).

Lemma 3.14. K compact Hausdorff, A ⊆ CR(K) sublattice. Suppose A approximates f at every pair
of pts (i.e., ∀ϵ > 0, ∀x, y ∈ K, ∃g ∈ A s.t. |g(x) − f(x)|, |g(y) − f(y)| < ϵ). Then A approximates f
uniformly.

Proof. Let ϵ > 0. For each x, y ∈ K, find gxy ∈ A s.t. |gxy(x) − f(x)|, |gxy(y) − f(y)| < ϵ. Define
Vxy = {z ∈ K : |gxy(z) − f(z)| < ϵ}. Then Vxy is an open nbd of x and y. Fix x ∈ K, we have an
open cover {Vxy : y ∈ K}. Pass to a finite subcover Vxy1 , ..., Vxyn . Put gx = gxy1 ∧ · · · ∧ gxyn . Then gx
satisfies the property ∀y ∈ K, gx(y) < f(x) + ϵ. Define Ux = {z : |gx(z) − f(z)| < ϵ}. Pass to a finite
cover K = Ux1

∪ · · · ∪ Uxm
. Put g = gx1

∨ · · · ∨ gxm
. Then ∀y ∈ K, have g(x) > f(x) − ϵ. Therefore

|f(x)− g(x)| < ϵ for all x ∈ K.
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Aim to prove that closed subalgebra are always sublattices.

Lemma 3.15. x 7→ |x| on [−1, 1] can be unif. approximated by poly.

Proof. Enough to approximate
√
x2 + ϵ for ϵ > 0 because |

√
x2 + ϵ − |x|| = | ϵ√

x2+ϵ+|x| | ≤
√
ϵ. Use the

holo’c function (z + ϵ)1/2 on ℜ(z) > −ϵ to obtain a uniformly convergent series expansion on [0, 1], e.g.,
Taylor expand at 1/2. (It is locally uniformly convergent on the disk of radius 1/2+ ϵ, so restrict to the
closed disk of radius 1/2 it is unif. convergent.) Now, the same truncated series evaluated at x2 is unif.
convergent on [−1, 1]

Corollary 3.16. K is compact Hausdorff, A ⊆ C(K) closed subalgebra. Then A is a sublattice.

Proof. Enough to show that f ∈ A =⇒ |f | ∈ A because f ∨ g and f ∧ g can be expressed in terms of
f, g and |f − g|. WLOG, assume ∥f∥∞ ≤ 1. Given ϵ > 0, find P (t) poly s.t. |P (t)− |t|| < ϵ on [−1, 1].
|P (f)− |f(t)|| < ϵ since ∥f∥∞ ≤ 1.

Theorem 3.17 (Stone-Weierstrass). K compact Hausdorff. A ⊆ C(K) subalgebra s.t.

(i) A contains the constants

(ii) A separates points of K, i.e., ∀x, y ∈ K x ̸= y, ∃f ∈ A s.t. f(x) ̸= f(y).

Then A is dense in C(K).

Proof. Ā closed subalgebra, so a sublattice. Given x, y ∈ K and ϵ > 0, can find g ∈ A s.t. g(x) = f(x)
and g(y) = f(y). The previous lemma implies that Ā approximates f unif. so Ā is dense in C(K), so
Ā = C(K).

Remark 13.

4 Hilbert Spaces

Let X be a real or complex vector space.

Definition 4.1. An inner product on X is a function (−,−) : X ×X → F (where F = R or C) s.t. for
all x, y, z ∈ X and λ, µ ∈ F,

(i) (λx+ µy, z) = λ(x, z) + µ(y, z)

(ii) (y, x) = (x, y)

(iii) (x, x) ≥ 0, with (x, x) = 0 iff x = 0.

Examples include the usual inner product on ℓ2 and L2. Note that an inner product induces a norm
by ∥x∥ = (x, x)1/2.

Theorem 4.2. Let X be an inner product space. Then

(i) (Cauchy-Schwarz) ∀x, y ∈ X, |(x, y)| ≤ ∥x∥∥y∥

(ii) (Triangle inequality) ∀x, y ∈ X, ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Proof. (i): WLOG, assume (x, y) ∈ R. Then ∀y ̸= 0 and t ∈ R, have ∥x + ty∥2 = (x + ty, x + ty) =
∥x∥2 + t2∥y∥2 + 2t(x, y) ≥ 0. Hence 4(x, y)2 − 4∥x∥2∥y∥2 ≤ 0. Rearrange.

(ii) ∥x+ y∥2 = (x+ y, x+ y) = ∥x∥2 + ∥y∥2 + 2ℜ(x, y) ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ = (∥x∥+ ∥y∥)2

Definition 4.3. A Hilbert space is a complete inner product space.

Example 4.4. ℓ2 is Hilbert, but C[0, 1] with (f, g) =
∫ 1

0
fḡ is not Hilbert.

Proposition 4.5 (Polarization identity). Let X be an inner product space; x, y ∈ X. Then

Real Case: (x, y) = 1
2 (∥x+ y∥2 − ∥x∥2 − ∥y∥2)

Complex Case: (x, y) = 1
4 (∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2)

Proof. Expand ∥x+ y∥2 in each case.
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Proposition 4.6 (Parallelogram Law). Let X be an inner product space; x, y ∈ X. Then ∥x + y∥2 +
∥x− y∥2 = 2∥x∥2 + 2∥y∥2

Proof. Compute.

Remark 14. The parallelogram law characterizes inner product spaces in the sense that if a normed space
X satisfies the conclusion of the parallelogram law, then the polarization identity defines a valid inner
product on X which induces its norm. In particular, a normed space X is an inner product space if and
only if every 2-dimensional subspace of X is an inner product space.

Definition 4.7. X inner product space. x, y ∈ X are said to be orthogonal, written x ⊥ y if (x, y) = 0.

Proposition 4.8 (Pythagoras). X an inner product space; x, y ∈ X. Then x ⊥ y =⇒ ∥x + y∥2 =
∥x∥2 + ∥y∥2

Proof. Compute.

Similarly, if x1, ..., xn are pairwise orthogonal, then ∥
∑

i xi∥2 =
∑

i ∥xi∥2.

Theorem 4.9. Let X be an inner product space. Then its completion X̃ is also an inner product space.

Proof. For x, y ∈ X̃, choose (xn) and (yn) in X s.t. xn → x and yn → y. Define (x, y) = limn→∞(xn, yn).
Easy to check various properties and that the induced norm is complete.

Example 4.10. L2 is the completion of C[0, 1] with respect to ∥ · ∥2.

Recall that the distance from a point to a closed set needs not be attained even in ℓ2.

Theorem 4.11 (Closest Point Theorem). Let H be a Hilbert space, S a closed subspace of H, x ∈ H.
Then there exists a unique y ∈ S s.t. ∥x− y∥ = d(x, S).

Proof. Let d = d(x, S). Choose (yn) in S s.t. ∥x− yn∥ → d. We now use the parallelogram law to prove
that yn is Cauchy. The key ingredient is the parallelogram law. We have

2∥x− yn∥2 + 2∥x− ym∥2 = ∥2x− yn − ym∥2 + ∥yn − ym∥2

Rearrange,

∥yn − ym∥2 = 2∥x− yn∥2 + 2∥x− ym∥2 − 4∥x− 1

2
(yn + ym)

≤ 2∥x− yn∥2 + 2∥x− ym∥ − 4d2

By completeness and closedness, this sequence has a limit y ∈ S s.t. d(x, y) = d.
To see uniqueness, note that if z also satisfies the above, then ∥y − z∥2 = 2∥x − y∥2 + 2∥x − z∥2 −

4∥x− 1
2 (y + z)∥2 ≤ 2d2 + 2d2 − 4d2 = 0, so y = z.

Remark 15. The same proof shows that the distance to a closed convex set is attained.

If X is an inner product space, x ∈ X, then we define x⊥ = {y ∈ X : (x, y) = 0}, which is a closed
subspace. For S ⊆ X, S⊥ = {y ∈ X : ∀x ∈ S, (x, y) = 0} =

⋂
x∈S x⊥, and S⊥ is a closed subspace of

X. It is clear that S ⊆ S′ =⇒ S′⊥ ⊆ S⊥.

Theorem 4.12. Let H be a Hilbert space, F a closed subspace of H. Then H = F ⊕F⊥, i.e., F has an
orthogonal complement.

Proof. It is clear that F∩F⊥ = {0}. WTS F+F⊥ = H. Let x ∈ H. Choose y ∈ F s.t. ∥x−y∥ = d(x, F ).
We claim that x − y ∈ F⊥. If not, then pick z ∈ F s.t. (x − y, z) ̸= 0. WLOG, assume (x − y, z) is
real and > 0. Let t ∈ R+. We have ∥x − y∥2 ≤ ∥x − (y + tz)∥2 ≤ ∥x − y∥2 + t2∥z∥2 − 2t(x − y, z). So:
2t(x− y, z)− t2∥z∥2 ≤ 0. False for sufficiently small t.

Note that S ⊆ X =⇒ S ⊆ (S⊥)⊥.

Corollary 4.13. H a Hilbert space. Then

(i) F a closed subspace of H =⇒ (F⊥)⊥ = F

(ii) S ⊆ H =⇒ (S⊥)⊥ = ⟨S⟩
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(iii) S ⊆ H has dense linear span ⇔ S⊥ = {0}

Proof. Just check.

If H is a Hilbert space, then for each y ∈ H one may define θy : H → C by θy(x) = (x, y), which is
bounded linear by Cauchy-Schwarz. We also deduce that ∥θy∥ ≤ ∥y∥. But note that θy(y) = ∥y∥2, so
∥θy∥ = ∥y∥.

Theorem 4.14 (Riesz Representation Theorem). H a Hilbert space, f ∈ H∗. Then ∃y ∈ H s.t. f = θy.

Proof. WLOG f ̸= 0. Put E = ker f . Then E is a closed subspace of H and E ̸= H, so E⊥ ̸= {0}.
Also, dimE < 2 because x, y ∈ H =⇒ f(λx+ µy) = 0 for some λ, µ ̸= 0, so E⊥ = ⟨y⟩ for some y ∈ H.
WLOG, assume ∥y∥ = 1. Define u = f(y)y. Then f(u) = ∥u∥2. Now, for any x ∈ H, write x = z + λu
for some z ∈ E, λ ∈ C. Then, (x, y) = (z = λy, y) = λ∥y∥2 = f(x). Hence, we are done.

Corollary 4.15. H Hilbert. The map Θ : H → H∗, y 7→ θy is an isometric, conjugate-linear isomor-
phism, i.e., H is self-dual.

Proof. Have ∥θy∥ = ∥y∥ ∀y ∈ H, so Θ is an isometry. It’s surjective by Riesz Representation Theorem.
Clearly conj. linear by definition.

4.1 Orthonormal Bases

Definition 4.16. A sequence (xn) in an inner product space X is an orthonormal sequence if it consists
of pairwise orthogonal unit vectors. It is an orthonormal basis if ⟨xn : n ∈ N⟩ has dense linear span.

We use the same terminology for finite sequences.

Theorem 4.17 (Gram-Schmidt Process). Let (xn) be a linearly independent sequence in an inner product
space X. Then there exists an orthonormal sequence (en) s.t. ⟨e1, ..., en⟩ = ⟨x1, ..., xn⟩ for all n.

Proof. Let e1 = x1/∥x1∥. Then let e′2 = x2−(x2, e1)e1 and define e2 = e′2/∥e′2∥. Continue inductively.

Corollary 4.18. Let X be a separable inner product space. Then X has an orthonormal basis

Proof. Let (xn) be a sequence which is dense in X. WLOG, assume (xn) is linearly independent by
removing any xn depending on its predecessors. Apply Gram-Schmidt.

Example 4.19. The normalized Legendre polynomials are obtained by performing Gram-Schmidt on
the dense sequence 1, t2, t3, ... in X = CR[−1, 1] with the 2-norm. In fact, the nth one is a multiple of
dn

dtn ((t
2 − 1)n).

Corollary 4.20. Let X be an n-dimensional inner product space. Then X is isometrically isomorphic
to ℓn2 .

Proof. Let e1, ..., en be an orthonormal basis of X. Define T : X → ℓn2 by T (
∑

i λiei) = (λ1, ..., λn). T
is linear and bijective. Also, ∥(λ1, ..., λn)∥22 =

∑
i |λi|2 = ∥

∑
i λiei∥2, i.e., T is norm-preserving.

Remark 16. Isometric isomorphism also preserves the inner product by polarization.

We now aim to show that every separable infinite-dimensional Hilbert space is isometrically isomor-
phic to ℓ2.

Proposition 4.21. H Hilbert space; (en) an orthonormal sequence in H. Then for any λ1, λ2, ...,∈ C,∑
n

λnen converges ⇔ (λn) ∈ ℓ2

Proof. ‘⇒’: ∥
∑N

n=1 λnen∥ → ∥
∑∞

n=1 λnen∥ asN → ∞. But ∥
∑N

n=1 λnen∥ =
∑N

n=1 |λn|2, so
∑∞

n=1 |λn|2 <
∞.

‘⇐’: ∥
∑M

n=N λnen∥2 =
∑M

n=N |λn|2 → 0 as M,N → ∞, so
∑N

n=1 λnen is Cauchy.

Corollary 4.22 (Riesz-Fisher Theorem). H Hilbert; (en) an orthonormal sequence in H. Then for all
c ∈ ℓ2, there exists x ∈ H s.t. (x, en) = cn for all n.
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Proof. Let x =
∑

n cnen which converges as c ∈ ℓ2. Then (
∑N

n=1 cnen, ek) = ck for all N ≥ k, so
(x, ek) = ck for all k.

Definition 4.23. For an orthonormal sequence (en) in an inner product space X, we call (x, ek) the
kth (Fourier) coefficient of x with respect to (en).

We will show that for an orthonormal basis, x =
∑

n(x, en)en for all x.

Remark 17. This is false in a general Banach space. For instance, 1, t, t2, ..., have dense linear span in
CR[−1, 1] but |t| ≠

∑
ckt

k.

Theorem 4.24 (Bessel’s inequality). H Hilbert; (en) an orthonormal sequence. Then for all x ∈ H,∑∞
n=1 |(x, en)|2 ≤ ∥x∥2. In particular, ((x, en))

∞
n=1 ∈ ℓ2.

Proof. Put y =
∑k

n=1(x, en)en. We have (y, en) = (x, en) for all n ≤ k, so (x− y) ⊥ en for all n ≤ k, so
(x− y) ⊥ y, so By Pythagoras, ∥x∥2 = ∥x− y∥2 + ∥y∥2 ≥ ∥y∥2, and we are done.

Theorem 4.25. H Hilbert; (en) an orthonormal basis in H. Then for all x ∈ H, x =
∑∞

n=1(x, en)en.

Proof. ((x, en))
∞
n=1 ∈ ℓ2 by Bessel, so

∑
n(x, en)en converges to some y ∈ H. Note that (y, en) = (x, en)

for all n, so (y − x) ⊥ en for all n, so y − x ∈ ⟨en : n ∈ N⟩
⊥
= {0}, so y = x.

Remark 18. The previous two theorems also hold for inner product spaces: if (en) is an orthonormal
basis in X, then (en) is an orthonormal basis in its completion X̃ as X is dense in X̃.

Example 4.26. CC[0, 2π] with the 2-norm. Then (einθ)n∈Z is an orthonormal basis. So we get Fourier
series which converges in ∥ · ∥2. The same holds for any f ∈ L2[0, 2π].

For f ∈ CC[0, 2π], f(0) = f(2π). Write

Sk =

k∑
n=−k

(f, einθ)e−inθ

The above says Sk → f in ∥ · ∥2. Need not have uniform convergence or even pointwise convergence.
Fejer’s Theorem says that

S1 + · · ·+ Sk

k
→ f

uniformly.

Corollary 4.27 (Parseval). H Hilbert, (en) orthonormal basis for H. Then

(i) For all x ∈ H, ∥x∥2 =
∑

n |(x, en)|2

(ii) For all x, y ∈ H, (x, y) =
∑

n(x, en)(y, en).

Proof. (i): ∥
∑k

n=1(x, en)en∥2 =
∑k

n=1 |(x, en)|2. Let k → ∞, ∥x∥2 =
∑

n |(x, en)|2.
(ii): (

∑k
n=1(x, en)en,

∑k
n=1(y, en)en) =

∑k
n=1(x, en)(y, en). Let k → ∞.

Corollary 4.28. Let H be a separable infinite dimensional Hilbert space. Then H is isometrically
isomorphic to ℓ2.

Proof. Choose an orthonormal basis (en) for H. Define T : H → ℓ2 by T (x) = ((x, en))
∞
n=1. This is

well-defined by Bessel. T is clearly linearl and norm preserving. It is surjective by Riesz-Fischer.

4.2 Matrices of Linear Operators

Definition 4.29. Let H be a Hilbert space with an orthonormal basis (en). For T ∈ L(H), the matrix
of T w.r.t. (en) is A = (aij)

∞
i,j=1 where aij = (Tej , ei).

Thus, Tej =
∑∞

i=1 aijei, so the matrix of T determines T .

Remark 19. Not every matrix comes from a T ∈ L(H).
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4.3 Adjoints

Theorem 4.30. H Hilbert, T ∈ L(H). Then there exists a unique map T ∗ s.t. for all x, y ∈ H,
(Tx, y) = (x, T ∗y). Moreover, T ∗ ∈ L(H).

Remark 20. If T has a matrix A with respect to orthonormal basis, then T ∗ has matrix A† with respect
to this basis. However, we cannot define T ∗ this way because

1) Might depend on the orthonormal basis

2) H might not have an orthonormal basis (e.g. if it’s not separable)

3) A† might not be the matrix of a continuous linear map

Definition 4.31. T ∗ is the adjoint of T .

Proof. For each y ∈ H, x 7→ (Tx, y) is a bounded linear functional. By Riesz representation, there exists
z ∈ H s.t. θz = (x 7→ (Tx, y)) so that (Tx, y) = (x, z). Define T ∗y = z.

Uniqueness: note that (Tx, y) = (x, z) for all x. If z′ is another candidate, then (x, z) = (x, z′) for
all x, so z = z′.

Linearity: just compute.
Boundedness: For fixed y ∈ H, |(x, T ∗y)| = |(Tx, y)| ≤ ∥T∥∥x∥∥y∥ for all x ∈ H, so |(x, T ∗y)| ≤

∥T∥∥y∥ for all x ∈ H with ∥x∥ ≤ 1, so ∥T ∗y∥ ≤ ∥T∥∥y∥ (using that ∥z∥ > k =⇒ ( z
∥z∥ , z) > k). So

T ∗ ∈ L(H) with ∥T ∗∥ ≤ ∥T∥.

Example 4.32. H = ℓ2. The adjoint of the left shift operator is the right shift operator.

Proposition 4.33. H Hilbert, S, T ∈ L(H). Then

(i) (λS + µT )∗ = λ̄S∗ + µ̄T ∗ for all λ, µ ∈ C.

(ii) (ST )∗ = T ∗S∗

(iii) (T ∗)∗ = T

(iv) ∥T ∗∥ = ∥T∥

(v) ∥T ∗T∥ = ∥T∥2

Proof. (i), (ii), and (iii) are easy to prove. (iv) follows from (iii) since the reversed inequality ∥T∥ ≤ ∥T ∗∥
also holds. For (v), certainly ∥T ∗T∥ ≤ ∥T∥2. Also, ∥Tx∥2 = (x, T ∗Tx) ≤ ∥x∥2∥T ∗T∥, so ∥T∥2 ≤
∥T ∗T∥.

Remark 21. It’s not true in general that ∥T 2∥ = ∥T∥2, e.g., consider a nilpotent operator.

Definition 4.34. H Hilbert; T ∈ L(H). Then T is Hermitian (or self-adjoint) if T ∗ = T .

Example 4.35. Orthogonal projections onto a closed subspace is Hermitian.

Proposition 4.36. H complex Hilbert space; T ∈ L(H). Then there exists T1, T2 Hermitian with
T = T1 + iT2

Proof. T = 1
2 (T + T ∗) + i · i

2 (T
∗ − T ).

Remark 22. This decomposition is unique. If T1 + iT2 = T ′
1 + iT ′

2, then taking adjoint and manipulate
a little bit, you get T1 − T ′

1 = 0 and T2 − T ′
2 = 0.
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5 Spectral Theory

Let X be a Banach space, T ∈ L(X). We know that T ∈ L(X) is invertible if and only if T is a bijection
and T−1 is continuous. This is equivalent to T being bijective by inversion theorem. So: T ∈ L(X) is
invertible if and only if T is injective and surjective. Note that both conditions are necessary (e.g., left
shift and right shift).

Theorem 5.1. X Banach space, T ∈ L(X). Then ∥T∥ < 1 implies that I − T is invertible with
(I − T )−1 =

∑∞
n=0 T

n

Proof. Note that (I − T )
∑k

n=0 T
n = I − T k+1. Let k → ∞, this expression converges to I in operator

norm. Similar argument holds for the other composition.

For a Banach space X, we write GL(X) for the set of invertible bounded linear operators X → X.

Theorem 5.2. X Banach, then

(i) G is open in L(X)

(ii) The function T → T−1 from G to itself is continuous,

(iii) Let (Tn) in G, T ∈ L(X) with Tn → T but T /∈ G, then ∥T−1
n ∥ → ∞.

Proof. (i): For T ∈ G, have T − S = T (I − T−1S) for all S ∈ L(X). Choose S with sufficiently small
operator norm, in particular, ∥S∥ < 1

∥T−1∥ , then I−T−1S is invertible. This shows that B(T, 1
∥T−1∥ ) ⊆ G.

(ii): For ∥S∥ < ∥T−1∥−1, (T − S)−1 − T−1 =
∑∞

n=1(T
−1S)nT Taking operator norm, see that

∥(T − S)−1 − T−1∥ ≤
∞∑

n=1

∥S∥n∥T−1∥n+1 → 0

as ∥S∥ → 0.
(iii): Given ϵ > 0, for n sufficiently large s.t. ∥Tn − T∥ < ϵ we have B(Tn,

1
∥T−1

n ∥ ) ⊆ G and T /∈ G so

∥T−1
n ∥−1 < ϵ, so ∥T−1

n ∥ > 1
ϵ .

Now we restrict out attention to complex Banach spaces.

Definition 5.3. Let X be a (complex) Banach space, T ∈ L(X), λ ∈ C. λ is an eigenvalue of T if there
exists x ∈ X non-zero with Tx = λx. Such an x is called an eigenvector of T .

Example 5.4. X = ℓ2, T = Right shift. Then 0 is not an eigenvalue of T , but T is not surjective and
hence not invertible. In fact, T has no eigenvalues.

Definition 5.5. X complex Banach space with T ∈ L(X). The spectrum of T is σ(T ) = {λ ∈ C :
(T − λI) not invertible}.

Observe that for finite dimensional space, this is just the set of eigenvalues.

Remark 23. λ ∈ σ(T ) iff either T − λI not injective (λ is an e-value) or T − λI not surjective.

Proposition 5.6. X a (complex) Banach space; T ∈ L(X). Then σ(T ) is a closed subset of {z ∈ C :
|z| ≤ ∥T∥}. In particular, σ(T ) is compact.

Proof. λ /∈ σ(T ) iff T − λI ∈ G. But G is open and λ 7→ T − λI is a continuous function C → L(X), so
C \ σ(T ) is open.

For |λ| > ∥T∥, T − λI = −λ(I − I
λ ) which is invertible.

Definition 5.7. C \ σ(T ) is the resolvent set of T . The function R : C \ σ(T ) → L(X), λ 7→ (λI − T )−1

is the resolvent function of T .

For |λ| > ∥T∥, R(λ) =
∑∞

n=0
Tn

λn+1 .

Example 5.8. The spectrum of the left shift operator is the closed unit disk. Note that every value in
the open unit disk is an eigenvalue (consider (1, λ, λ2, ...)), and σ(T ) is a closed subset of {z ∈ C : |z| ≤ 1}.
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Definition 5.9. X complex Banach space; T ∈ L(X); λ ∈ C. λ is an approximate eigenvalue of T if

∀ϵ > 0,∃x ∈ X, ∥x∥ = 1 s.t. ∥Tx− λx∥ < ϵ

Equivalently, λ is an approximate eigenvalue if there exists a sequence (xn) in X with ∥xn∥ = 1 for all
n s.t. ∥Txn − λxn∥ → 0. Such a sequence (xn) is an approximate eigenvector of T .

Proposition 5.10. X complex Banach; T ∈ L(X); λ ∈ C. Then

(i) λ is an eigenvalue of T =⇒ λ is an approximate eigenvalue of T .

(ii) λ is an approximate eigenvalue of T =⇒ λ ∈ σ(T ).

Proof. (i): Trivial.
(ii): If λ is an approx. e-value of T , then find sucha sequence (xn). If T − λI is invertible, then

(T − λI)−1(Txn − λxn) → 0, so xn → 0. Contradiction.

Example 5.11. 1. Ten = 1
2n en, then 0 is an approx e-value but not an e-value.

2. T Right shift. 0 is not an approx e-value, but 0 ∈ σ(T ).

Definition 5.12. Write σap(T ) for the set of approximate eigenvalues. This is called the approximate
point spectrum of T . Somtie write σp(T ) for the set of eigenvalues, called the point spectrum of T .

Theorem 5.13. X a complex Banach space; T ∈ L(X). Then ∂σ(T ) ⊆ σap(T ).

Proof. For λ ∈ ∂σ(T ), there exists λn ∈ C \ σ(T ) with λn → λ. Then T − λnI → T − λI, so ∥(T −
λnI)

−1∥ → ∞ as n → ∞. So there exists a sequence (xn) in X s.t. ∥xn∥ → 0 and ∥(T − λnI)
−1xn∥ = 1

for all n. Put yn = (T −λnI)
−1xn, then ∥yn∥ = 1 for all n and (T −λnI)yn = xn → 0, so (T −λI)yn = 0

(note: (T − λI)yn = (T − λnI)yn + (λn − λ)yn)

Example 5.14. Let T be the right shift operator. Any value in the open unit disk is not an approximate
e-value, so ∂σ(T ) ⊆ S1. Then either D1 ⊆ σ(T ) or D1 ∩ σ(T ) = ∅. Note that 0 ∈ σ(T ), so the whole
open unit disk must be in σ(T ), so σ(T ) is the closed unit disk.

Theorem 5.15 (Spectral Mapping Theorem). X complex Banach space; T ∈ L(X). Let p be a non-
constant complex polynomial. Then σ(p(T )) = {p(λ) : λ ∈ σ(T )}.

Proof. For a fixed µ ∈ C, write p(z)− µ = c(z− λ1) · · · (z− λn), where c, λ1, ..., λn ∈ C and c ̸= 0. Then
p(T )− µI = c(T − λ1I) · · · (T − λnI).

We claim that p(T )− µI is invertible if and only if T − λiI is invertible for all i.

Proof of claim. ‘⇐’: Trivial
‘⇒’: If T − λiI is not invertible, then (T − λ1I) · · · (T − λnI) is not invertible. Note that for all

A,B, A not invertible implies that A not injective or A not surjective, which implies that BA or AB not
invertible. Also note that T − λjI commute.

So µ ∈ σ(p(T )) iff T − λi not invertible for some i, but {λ1, ..., λn} = {λ ∈ C : p(λ) = µ. This shows
that µ ∈ σ(p(T )) ⇔ λ ∈ σ(T ) for some λ with p(λ) = µ.

Remark 24. We did not cheat here. It is not true that A not invertible implies AB not invertible, e.g.,
A left shift, B right shift.

Definition 5.16. X a complex Banach space; T ∈ L(X). The spectral value of T is r(T ) = sup{|λ| :
λ ∈ σ(T )}.

Certainly, r(T ) ≤ ∥T∥.

Example 5.17. r(Left shift) = r(Right shift) = 1.

Corollary 5.18. X a complex Banach space, T ∈ L(X). Then r(T ) ≤ infn≥1 ∥Tn∥1/n.

Proof. r(Tn) ≤ ∥Tn∥, but r(Tn) = r(T )n by spectral mapping theorem, so r(T ) ≤ ∥Tn∥1/n.

Example 5.19. For T nilpotent, then r(T ) = 0, so we can have strict inequality r(T ) ≤ ∥T∥.
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Theorem 5.20 (Non-emptiness of the spectrum). H a (non-zero) Hilbert space, T ∈ L(H). Then
σ(T ) ̸= ∅.

Remark 25. If dimH < ∞, then we are done by FTA, which can be proved by Liouville’s theorem. We
will carry out a similar argument here.

Proof. Suppose σ(T ) = ∅. Then the resolvent function R is defined on C. Observe that

R(λ)−R(µ) = (λI − T )−1((µI − T )− (λI − T ))(µI − T )−1

so
R(λ)−R(µ)

λ− µ
= −R(λ)R(µ) → −R(λ)2

as µ → λ. For fixed x, y ∈ H, define f : C → C by f(λ) = (R(λ)x, y). Then by direct computation, we
see that f is entire.

Now, for |λ| > ∥T∥, we have ∥(λI−T )u∥ ≥ (|λ|−∥T∥)∥u∥ for all u ∈ H, so ∥(λI−T )−1∥ ≤ 1
|λ|−∥T∥ → 0

as |λ| → ∞. Thus |f(λ)| ≤ ∥R(λ)∥∥x∥∥y∥ → 0 as |λ| → ∞. By Liouville, f ≡ 0. Thus (R(λ)x, y) = 0
for all λ, x, y, so R(λ)x = 0 for all λ, x. This is a massive contradiction.

Remark 26. 1) If T ∈ L(X), X Banach, we could look at f(λ) = ϕ(R(λ)x), where x ∈ X and ϕ ∈
X∗. We would get f ≡ 0, i.e., ϕ(R(λ)x) for all λ, x. By Hahn-Banach, R(λ)x = 0 for all λ, x, a
contradiction.

2) Can rephrase the above proof in terms of L(H)-valued analytic functions. A function is called analytic

if for all λ ∈ C, there exists S ∈ L(H) s.t. g(λ)−g(µ)
λ−µ → S as µ → λ. We proved that an L(H)-valued

Liouville’s theorem.

3) Have R(λ) =
∑∞

n=0
Tn

λn+1 for |λ| > ∥T∥. By considering L(H)-valued analytic functions one can show

that this Laurent series converges for |λ| > r(T ). But one can also show that
∑∞

n=0
Tn

λn+1 has radius of

convergence lim sup ∥Tn∥1/n. Hence r(T ) ≥ lim sup ∥Tn∥1/n. But r(T ) ≤ infn≥1 ∥Tn∥1/n by spectral
mapping theorem, so r(T ) = limn→∞ ∥Tn∥1/n. This is the spectral radius formula.

5.1 Spectral Theory of Hermitian Operators

In this section all spaces are over C.

Proposition 5.21. H Hilbert space; T ∈ L(H). Then σ(T ∗) = {λ̄ : λ ∈ σ(T )}.

Proof. For any T ∈ L(H), T invertible iff T ∗ invertible. Thus T − λI is invertible iff T ∗ − λ̄I is
invertible.

Example 5.22. We can deduce the spectrum of right shift using this result.

Theorem 5.23. H Hilber space, T ∈ L(H) Hermitian. Then σ(T ) ⊆ R.

Proof. For λ an approximate eigenvalue of T , there exists (xn) in H, ∥xn∥ = 1 with Txn − λxn → 0.
Thus (Txn − λxn, xn → 0), so (Txn, xn) → λ. But ∀x ∈ H, (Tx, x) = (x, Tx), so (Txn, xn) ∈ R for all
n, so λ ∈ R. We have ∂σ(T ) ⊆ σap(T ) ⊆ R, so σ(T ) ⊆ R.

Corollary 5.24. H Hilbert space, T ∈ L(H) Hermitian. Suppose λ, µ are distinct evalues with e-vectors
x, y, then x ⊥ y

Proof. Just compute.

Remark 27. For T Hermitian, σ(T ) = ∂σ(T ) since it’s a subset of R.

Proposition 5.25. H Hilbert, T ∈ L(H) Hermitian. Then r(T ) = ∥T∥.

Proof. WLOG, ∥T∥ = 1. We will show that 1 or −1 is an approximate eigenvalue. Choose a sequence
(xn) in X s.t. ∥xn∥ = 1 for all n and ∥Txn∥ → 1. Then

(Txn, Txn) = (T 2xn, xn) → 1
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as n → ∞. Now:

∥(T 2 − I)xn∥2 = (T 2xn − xn, T
2xn − xn)

= ∥T 2xn∥2 + 1− 2ℜ(T 2xn, xn)

Note that ∥T 2xn∥ ≤ ∥T∥2∥xn∥ ≤ 1, so ∥(T 2 − I)xn∥2 → 0 as n → ∞, i.e., (T + I)(T − I)xn → 0. If
(T − I)xn → 0, then 1 is an approximate eigenvalue. If (T − I)xn ̸→ 0, then by passing to a subsequence
if necessary, choose δ > 0 s.t. ∥(T − I)xn∥ ≥ δ for all n. Then (T + I)(T − I)xn → 0 and thus −1 is an
approxiamte eigenvalue.

Remark 28. For T Hermitian, have ∥T 2∥ = ∥T∥2. Repeat to get ∥T 2n∥ = ∥T∥2n for all n. The spectral
radius formula gives r(T ) = limn→∞ ∥Tn∥1/n = ∥T∥

Definition 5.26. X Banach, T ∈ L(X), Y ≤ X subspace. We say that T acts on Y (or equivalently, Y
is an invariant subspace for T ) if TY ⊆ Y .

Examples include eigenspaces.

Remark 29 (Invariant subspace problem). Does every operator T on a Banach space X of dimension
> 1 have a closed invariant subspace? The answer is false due to Enflo, Read. The answer is unknown
for Hilbert spaces.

Proposition 5.27. H Hilbert; T ∈ L(H); Y ≤ H. Then T acts on Y =⇒ T ∗ acts on Y ⊥. In
particular, for T Hermitian, T acts on Y =⇒ T acts on Y ⊥

Proof. Compute.

Corollary 5.28. Let T be a Hermitian operator on an n-dimensional Hilbert space, then H has an
orthonormal basis of eigenvectors.

Proof. Inductive proof, c.f. Linear algebra.

We aim to generalize this to infinite dimensions.

5.2 Spectral Theory of Compact Operators

X Banach, T ∈ L(X). Recall that any limit of finite rank operators is compact.

Proposition 5.29. X an infinite dimensional Banach space; T ∈ L(X) compact. Then 0 is an approx-
imate eigenvalue of T .

Proof. Since dimX = ∞, there exists (xn) s.t. ∥xn∥ = 1 with ∥xn − xm∥ ≥ 1 for all n ̸= m. Then there
exists a subsequence (xni) with (Txni) convergent. Then consider the sequence xni − xni+1 . This shows
that 0 ∈ σap(T ).

Note that 0 needs not be an eigenvalue, e.g., T (
∑

n xnen) =
∑

n
1
2nxnen on ℓ2.

Proposition 5.30. X Banach; T ∈ L(X) compact; λ ∈ C with λ ̸= 0. Then λ is an approximate
eigenvalue =⇒ λ is an eigenvalue.

Proof. λ is an approximate eigenvalue of T , so there exists (xn) with ∥xn∥ = 1 with Txn − λxn → 0 as
n → ∞, so there exists a subsequence xni

with Txni
→ y for some y ∈ X, so λxni

→ y. In particular,
y ̸= 0. Then xni

→ y/λ and T (y/λ)− λ(y/λ) = 0.

Proposition 5.31. X a Banach space; T ∈ L(X) compact. Then every eigen space E(λ) for λ ̸= 0 is
finite dimensional.

Proof. If not, then T (BX) ⊇ T (BE(λ)) = λBE(λ) which would contradicts compactness assumption.

A more elaborate version is the following.

Lemma 5.32. X Banach space; T ∈ L(X) compact. Then for all δ > 0, T has only finitely many
eigenvalues with |λ| > δ.
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Proof. Suppose λ1, λ2, ..., are distinct eigenvalues of T with |λn| > δ for all n. For each n, there exists
xn ∈ X s.t. Txn = λxn. Then xn are linearly independent. Define Xn = ⟨x1, ..., xn⟩. There exists
yn ∈ Xn, ∥yn∥ = 1 s.t. d(yn, Xn−1) = 1 by Riesz’s lemma.

We claim that Tyn has no convergent subsequence.

Proof of claim. Suppose yn = c1x1 + · · · + cnxn for some ci ∈ C. Then Tyn = λ1c1x1 + · · · + λncnxn,
so Tyn ∈ Xn, so d(Tyn, Xn−1) = d(λnyn, Xn−1) = |λn|. For any m < n, we now have Tym ∈ Xm and
d(Tyn, Xn−1) = |λn| > δ, so ∥Tyn − Tym∥ > δ.

This contradicts the assumption that T is compact.

Theorem 5.33 (Spectral Theorem for Compact Operators). X Banach; T ∈ L(X) compact. Then

(i) Either σ(T ) is finite or σ(T ) = {0, λ1, λ2, ...} where λn → 0

(ii) λ ∈ σ(T ); λ ̸= 0 =⇒ λ is an eigenvalue of T .

(iii) λ ∈ σ(T ), λ ̸= 0 =⇒ dimE(λ) < ∞

Proof. We have already proved (iii). Note that (ii) implies (i). If σ(T ) is infinite, then any non-zero
value in σ(T ) is an eigenvalue. For each δ > 0, only finitely many e-values can have modulus larger than
δ. So the eigenvalues form a sequence → 0. 0 ∈ σ(T ) since σ(T ) is closed.

To prove (ii), we show that ∀δ > 0, λ ∈ σ(T ); |λ| > δ =⇒ λ is an eigenvalue of T . Have ∂σ(T )∩{z ∈
C : |z| > δ} ⊆ σap(T ) ∩ {z ∈ C : |z| > δ} ⊆ {λ1, ..., λk} So σ(T ) ∩ {z ∈ C : |z| > δ} = {λ1, ..., λk}.

We now consider compact Hermitian operators.

Example 5.34. Suppose T : ℓ2 → ℓ2 is defined by T (
∑

n xnen) =
∑

n λnxnen where λn real and λn → 0.
This is clearly Hermitian and compact (being the limit of finite rank operators). We will show that this
is the only example.

Theorem 5.35 (Spectral Theorem for Compact Hermitian Operators). H separable Hilbert space; T ∈
L(H) compact Hermitian. Then

(i) H has an orthonormal basis (en) consisting of eigenvectors of T .

(ii) The corresponding eigenvalues λn → 0 if dimH = ∞.

Remark 30. Note that (i) =⇒ (ii). Using a proposition we proved earlier.

Proof. Let the eigenvalues of T be λ1, λ2, ... (could be finite or even empty). Then the eigenspaces E(λi)
are pairwise orthogonal. Pick an orthonormal basis for each E(λi), then their union is an orthonormal
sequence which has closed linear span Y . We claim that Y = H.

Proof of claim. T acts on E(λn) for each n, so T acts on E(λn)
⊥, so T acts on

⋂
n E(λn)

⊥ = Y ⊥.
Now T |Y ⊥ is compact since Y ⊥ is closed and T is compact, and T |Y ⊥ has no eigenvalues. Therefore,
r(T |Y ⊥) = 0, i.e., T |Y ⊥ = 0, so Y ⊥ = {0} because 0 is not an eigenvalue of T |Y ⊥ .

Theorem 5.36. H Hilbert; T ∈ L(H) compact Hermitian. Then there exists a closed subspace Y of H
and an orthonormal basis (en) of Y and (λn) in R s.t. ∀x ∈ H, x =

∑
n xnen + z; z ∈ Y ⊥ =⇒ Tx =∑

n λnxnen.

Proof. Let the non-zero eigenvalues of T be λ1, λ2, ... (could be finite or even empty). Pick an or-
thonormal basis of each E(λi) (dimE(λi) < ∞). Their union (en) is an orthonormal basis for Y =
⟨E(λi) : λi ∈ σ(T ), λ ̸= 0⟩. Note that T acts on Y ⊥ with T |Y ⊥ having no non-zero eigenvalues, so
r(T |Y ⊥) = 0, so ∥T |Y ⊥∥ = 0 (since T |Y ⊥ is Hermitian), so T |Y ⊥ = 0.
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