Riemann Surfaces

Kevin

January 2025

1 The Complex Plane

): (Owen's signature)

1.1 Review of Complex Analysis

- A domain $U \subseteq \mathbb{C}$ is an open (non-empty) and connected (hence path-connected) subset.
- Disk centered at z_0 with radius r: $D(z_0, r)$.
- Punctured disk $D'(z_0, r)$.

If $f: U \to \mathbb{C}$ is complex-diff, then $\det J = |f'|^2$, where J is the Jacobian of f regarded as a function on \mathbb{R}^2 .

Definition 1.1. $f: U \to \mathbb{C}$, U domain, is holo'c on U if f is \mathbb{C} -diff for all $z_0 \in U$.

Theorem 1.2 (Taylor). If f is holo'c on U and $D(z_0, r) \subseteq U$, then $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges on $D(z_0, r)$ with $a_n = f^{(n)}(z_0)/n!$. Then f holo'c on U implies that $f^{(n)}$ holo'c on U.

Theorem 1.3 (Identity theorem). f, g be holo'c on a domain U, then either $f \equiv g$ or for all $z_0 \in U$ there exists r > 0 s.t. $f(z) \neq g(z)$ for all $z \in D'(z_0, r) \subseteq U$.

Recall that if $f:D'(z_0,r)\to\mathbb{C}$ is holo'c then z_0 is an isolated singularity. In this situation we have the (unique) Laurent expansion at z_0 , $f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n$ on $D'(z_0,r)$.

Theorem 1.4. Exactly one occurs

- Removable
- Pole
- Isolated essential.

Definition 1.5. $f: U \to \mathbb{C}$ (U domain) meromorphic if it's holo'c away from poles.

Theorem 1.6 (Open mapping theorem). f holo'c on a domain U. Then f is either constant or an open map.

Corollary 1.7 (Inverse function theorem). If f is holo'c on a domain, then

- 1. f injective $\implies f^{-1}$ is holo'c with $(f^{-1})'(z) = 1/f'(f^{-1}(z))$.
- 2. if $f'(z_0) \neq 0$ for some $z_0 \in U$, then there exists an open nbd (nbd will always be open in this course) N of z_0 s.t. $f: N \to f(N)$ is biholomorphic (i.e., f and f^{-1} are both holo'c).

1.2 Continuation of Power Series

Notation: $\Delta := D(0,1)$, and $T = \{z \mid |z| = 1\}$.

Suppose we have power series with radius of convergence R (not 0 or ∞) so $f: D(z_0, R) \to \mathbb{C}$ holo'c. WLOG, assume R = 1 and power series as domain Δ .

Definition 1.8. A point $z \in T$ is regular if $\exists D(z,r)$ and $g: D(z,r) \to \mathbb{C}$ holo'c s.t. $f \equiv g$ on $\Delta \cap D(z,r)$. Otherwise, we say that z is singular.

So z being regular means that f can be extended holomorphically to \bar{f} on $\Delta \cup D(z,r)$.

Example 1.9. (i) $f(z) = \sum_n z^n$ diverges on T but the f(z) = 1/(1-z) means that $T \setminus \{1\}$ are regular points

(ii) Take $f(z) = \sum_{n \geq 2} \frac{z^n}{n(n-1)}$ is absolutely conv. on T. Note that 1 is singular. If it's regular, then f'' extends but f'' is the geometric series.

Remark 1. (i) The set of regular points is open in T.

(ii) For $w \in \Delta$, let $\rho(w)$ be radius of convergence of the Taylor series at w. For $z \in T$, have z regular if and only if $\rho(z/2) > 1/2$.

Theorem 1.10. If $f(z) = \sum_{n>0} a_n z^n$ has r.o.c. 1, then there is a singular point on T.

Proof. If not, then for all $w \in T$, $\exists r_w > 0$ s.t. f can be extended holomorphically to f_w on $\Delta \cup D(w, r_w)$. Note that $D(w, r_w) \cap D(w', r_{w'})$ is convex (if non-empty). Let $F : \Delta \cup \bigcup_{w \in T} D(w, r_w) \to \mathbb{C}$ be the extension of f. F is well-defined. If $z \in D(w, r_w) \cap D(w', r_{w'})$ then $f_w, f_{w'}$ both holo'c on $D(w, r_w) \cap D(w', r_{w'}) \cup \Delta$. By identity theorem, they agree. Now, we note that the domain of F includes D(o, R) for some R > 1. (If not, take z_n with $1|z_n| < 1 + 1/n$) and $z_n \notin \text{dom}(F)$, then by sequential compactness, get a contradiction.) Contradiction with r.o.c being 1.

Corollary 1.11. If $a_n \geq 0$ for all n, then 1 is singular.

Proof. For $z \in T$ and each k, we have $f^{(k)}(z/2) = \sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z/2)^{n-k}$. So $|f^{(k)}(z/2)| \le |f^{(k)}(1/2)|$, so $\rho(z/2) \ge \rho(1/2)$. If $\rho(1/2) > 1/2$, then all $z \in T$ is regular. Contradiction. □

1.3 Complex Logarithm

Notation: $L_{\theta} = \{ re^{i\theta} : r \geq 0 \}.$

Definition 1.12. For any $\alpha \in \mathbb{R}$, define $\log_{\alpha} : \mathbb{C} \setminus L_{\alpha+\pi} \to \mathbb{C}$ as $\log_{\alpha}(re^{i\theta}) = \ln r + i\theta$, where $\theta \in (\alpha - \pi, \alpha + \pi)$.

1.4 Analytic Continuation (Plane)

Let D be a fixed domain of \mathbb{C} .

Definition 1.13. A function element of D is a pair (f, U), where U is a subdomain $(\subseteq D)$ and f is a holo'c function defined on U.

Definition 1.14. Let (f,U) and (g,V) be function elements of D. Say (g,V) is a direct analytic continuation of (f,U) if $U \cap V \neq \emptyset$ and $f \equiv g$ on $U \cap V$.

Remark 2. The relation of being direct analytic continuation is relfexive and symmetric but not transitive. For instance, $f = \log_{\pi/2}$ on its domain, $g = \log_0$ on the right half plane, $h = \log_{-\pi/2}$ on its domain.

Definition 1.15. (g, V) is an analytic continuation of (f, U) along some path γ if there exists function elements $(f, U) = (f_1, U_1), (f_2, U_2), ..., (f_n, U_n) = (g, V)$ and a dissection $\{t_0 = 0 \le t_1 \le ... \le t_n = 1\}$ s.t. (f_{i+1}, U_{i+1}) is a direct analytic continuation of (f_i, U_i) and $\gamma([t_{i-1}, t_i]) \subseteq U_i$. Write $(f, U) \approx (g, V)$. An equivalence class \mathfrak{F} is called a complete analytic function of D.

Note that if (g, V) and (h, V) are both analytic continuations of (f, U) along the **same** path γ , then $g \equiv h$ on V. (See ES1 or later).

Remark 3. Can do the same for meromorphic continuation.

 \subset : (Owen's Signature)

1.5 INFORMAL Examples of Riemann Surfaces

- 1) Take disjoint copies \mathbb{C}_k^* of \mathbb{C}^* indexed by $k \in \mathbb{Z}$, so $(z,k) \in \mathbb{C}_k^*$. On \mathbb{C}_k^* define $f_k(z) = \ln r + i\theta$ for $z = re^{i\theta}$ and $(2k-1)\pi < \theta \le (2k+1)\pi$. Glue different copies along the cut. Get a space S. Then can define $F: S \to \mathbb{C}$ given by $(z,k) \mapsto f_k(z)$. F is cts, bijective and left invertible. Can do the same for $z^{1/n}$ except get n copies of \mathbb{C}^* .
- 3) $\sqrt{z^2-1}$. Cut [-1,1]. Take two copies of "cut complex plane", P_0, P_1 . Glue.

Ans You can tune a piano but you can't tuna fish!!!

1.6 Abstract Riemann Surfaces

Definition 1.16. A Riemann Surface R is a (non-empty) connected Hausdorff top. space with a collection of charts (homeo to open subsets of \mathbb{C}) such that the transition functions are holo'c.

Note the transition function $\tau_{ij} = \varphi_i \varphi_j^{-1}$ is biholo'c. In particular, any Riemann surface is orientable. Second countability is automatic from the definition. (Rado 1925)

Two atlases are said to be compatible (Same Riemann surface) if their union is an atlas.

" (Owen's Signature)

Proposition 1.17. The Riemann sphere \mathbb{C}_{∞} is the top. space $\mathbb{C} \cup \{\infty\}$ (open sets are open subsets of \mathbb{C} if $\infty \notin U$ or U^c is compact in \mathbb{C} if $\infty \in U$.) Charts $\varphi_0 : \mathbb{C} \to \mathbb{C}$ and $\varphi_1(\mathbb{C}_{\infty} \setminus \{0\})$

Given $P(z,w) \in \mathbb{C}[z,w]$ Consider $S = \{(z,w) \in \mathbb{C}^2 : P(z,w) = 0, (\partial P/\partial z, \partial P/\partial w) \neq (0,0)\}$. Then each conn. component is a Riemann surface. Suppose $(z_0,w_0) \in S$ and $\partial P/\partial z \neq 0$ at z_0 . Get $f_{w_0} = P(-,w_0)$. By shrinking domain, assume $f_{w_0}D(z_0,r) \to \operatorname{im}(f_{w_0})$ Let $\gamma = \partial D(z_0,r)$ oriented counterclockwise.

⊃; (Owen's Signature)

2 Maps on Riemann Surfaces

2.1 Analytic Maps

Definition 2.1. For Riemann Surfaces R, S, a cts function $f: R \to S$ is analytic if for all charts (φ, U) on R and (ψ, W) on S, have (if $U \cap f^{-1}(W) \neq \emptyset$) $\psi f \varphi^{-1} : \varphi(U \cap f^{-1}(W)) \to \mathbb{C}$ is holomorphic.

Note that if R = S as top. spaces and f = id, then two atlases are compatible iff id is analytic.

Consider \mathbb{C} (\mathbb{C} with chart given by conjugation), then any biholomorphic map $f:\mathbb{C}\to\mathbb{C}$ is not analytic as a map $f:\bar{\mathbb{C}}\to\mathbb{C}$, but the map $f(z)=\bar{z}$ is analytic.

Let U be a domain in \mathbb{C} . A cts function $f: U \to \mathbb{C}_{\infty}$ is analytic iff f is holo'c on $U \setminus f^{-1}(\{\infty\})$ and g = 1/f(z) is holo'c on $U \setminus f^{-1}(\{0\})$. If g is never 0, then f is holo'c. Otherwise $|f(z)| \to \infty$ near the zeros of g, i.e., f has poles, i.e., f is meromorphic on U.

A map $f: \mathbb{C}_{\infty} \to \mathbb{C}$ is analytic iff $f: \mathbb{C} \to \mathbb{C}$ and f(1/z) are both holomorphic. By compactness, f is bounded, so f is constant by Liouville.

Definition 2.2. Let R be a Riemann surface. An analytic function f on R is $f: R \to \mathbb{C}$ (analytic), and a meromorphic function g on R is $g: R \to \mathbb{C}_{\infty}$ (analytic)

Proposition 2.3. $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is analytic and nonconstant iff

$$f(z) = \frac{c(z - \alpha_1) \cdots (z - \alpha_m)}{(z - \beta_1) \cdots (z - \beta_n)}$$

where $c \neq 0$ and $\alpha_i \neq \beta_j$ with $\infty \mapsto \begin{cases} \infty & m > n \\ c & m = n \\ 0 & m < n \end{cases}$

Proof. Analytic iff f(z) and f(1/z) are both meromorphic on \mathbb{C} .

 (\Leftarrow) : Clear (\Rightarrow) : If $f(\infty) \neq \infty$. Replace by 1/f. By continuity, there exists K > 0 s.t. no poles in |z| > K, so we have a finite number of poles $\{\zeta_1, ..., \zeta_i\}$. Have Laurent series around each pole. Let $Q_j(z)$ be the principal part of the Laurent series around ζ_j . Let $\bar{f} = f - Q_1 - \cdots - Q_i$, then f has removable singularities at each ζ_j and holo'c elsewhere (including ∞). So $\bar{f} : \mathbb{C}_{\infty} \to \mathbb{C}$ is analytic, so constant.

Theorem 2.4 (Identity theorem for Riemann surfaces). If $f, g : R \to S$ are analytic maps between Riemann surfaces, then $f \equiv g$ on R or $\forall w \in R$, $\exists \mathcal{N}$ open nbd of w s.t. $f \neq g$ on $\mathcal{N} \setminus \{w\}$.

Proof. Let $E = \{w \in R : \exists \mathcal{N} \ni w, \ f \equiv g \text{ on } \mathcal{N}\}, \ F = \{w \in R : \exists \mathcal{N} \ni w, \ f \neq g \text{ on } \mathcal{N} \setminus \{w\}\}.$ Need to show $E \cup F = R$.

If $f(w) \neq g(w)$. Find U, V open and separating f(w), g(w), then $\mathcal{N} = f^{-1}(U) \cap f^{-1}(V)$ shows $w \in F$. If f(w) = g(w). Take charts (φ, U) in R around w and (ψ, W) in S around f(w). $\psi f \varphi^{-1}$ and $\psi g \varphi^{-1}$ are holo'c on $\varphi(U \cap f^{-1}(U) \cap g^{-1}(V))$ and agree at $\varphi(w)$. By identity theorem in CA, there is a disk $D(\varphi(w), r)$ s.t. $\psi f \varphi^{-1}, \psi g \varphi^{-1} \varphi^{-1}$ either agree or disagree except at $\varphi(w)$. Let $\mathcal{N} = \varphi^{-1}(D(\varphi(w), r))$, so $w \in E \cup F$.

We are done by connectedness.

()-: (Owen's Signature with moustache)

Theorem 2.5 (Open Mapping Thm for Riemann surfaces). If $f: R \to S$ is a non-constant analytic map, then W open in $R \Longrightarrow f(W)$ is open in S.

Proof. Take $w \in W$ and charts (φ, U) , (ψ, V) around w, f(w) resp. Let $N = \varphi(U \cap f^{-1} \cap W)$, which is open in \mathbb{C} , and consider $\psi f \varphi^{-1}$. WLOG, assume N is connected, so by identity thm on \mathbb{C} , either const (contradiction) or $\psi f \varphi^{-1}(N)$ is open in $\psi(V)$, so $f \varphi^{-1}(N)$ is open in V. Let $M_w = \varphi^{-1}(N)$ which is a nbd of w in R with $M_w \subseteq W$ and $f(w) \in f(M_w)$ is open in S, so f(w) is an interior point of f(W). \square

Corollary 2.6. Let $f: R \to S$ be analytic with R compact. Then either f is surjective (so S is compact) or f is constant.

2.2 Local Representation of Analytic Maps

Let $U \subseteq \mathbb{C}$ be a domain and let $f: U \to \mathbb{C}$ be a non-const holo'c function with $z_0 \in U$. Locally, $f(z) = f(z_0) + \sum_{k \ge 1} a_k (z - z_0)^k$. Let $m \ge 1$ be the smallest s.t. $a_m \ne 0$. Then $f(z) = f(z_0) + (z - z_0)^m g(z)$ where $g(z_0) \ne 0$.

Definition 2.7. The multiplicity of f at z_0 is $m_f(z_0) = m$ as above.

Note that the set of points with multiplicity > 1 form a discrete set. Also, the multiplicity is multiplicative (w.r.t. composition).

Theorem 2.8 (Local mapping thm for domains). For non-const $f: U \to \mathbb{C}$ holo'c, $z_0 \in U$, $m = m_f(z_0)$. Then \exists nbd N of $z_0 \in U$ and a biholomorphic $\beta: N \to D(0, \delta)$ (for arbitrarily small $\delta > 0$) s.t. $f(z) = f(z_0) + \beta(z)^m$ on N.

Proof. Write $f(z) = f(z_0) + (z - z_0)^m g(z)$ on some $D(z_0, r) \subseteq U$ w/ g holo'c and non-zero at z_0 . Write $g(z_0) = re^{i\alpha} \neq 0$. Have a holo'c branch \log_{α} . Define $g^{-1}(\mathbb{C} \setminus L_{\pi+\alpha} \cap D(z_0, r))$ is a nbd of z_0 on which g is holo'c. Define $\beta(z) = (z - z_0)e^{1/m}\log_{\alpha}g(z)$. Can see that $\beta'(z_0) \neq 0$. By IFT, have nbd $N'' \subseteq N'$ w/ $\beta: N'' \to \beta(N'')$ biholo'c. Take $\beta^{-1}(D(0, \delta))$ and restrict.

Let $f: R \to S$ be analytic and $z_0 \in R$ with charts (φ_0, U_0) , (ψ_0, V_0) around z_0 and $f(z_0)$ resp.

Definition 2.9. The multiplicity $m_f(z_0)$ is $m_{\psi_0 f \varphi^{-1}}(\varphi_0(z_0))$.

Lemma 2.10. This is independent of charts.

Proof. For another pair of charts (φ_1, U_1) and (ψ_1, V_1) . Write $\psi_1 f \varphi_1^{-1} = (\psi_1 \psi_0^{-1})(\psi_0 f \varphi_0^{-1})(\varphi_0 \varphi_1^{-1})$. Done (multiplicative).

2.3 Degree

Theorem 2.11 (Valency Thm). Let $f: R \to S$ be a non-const and analytic. Suppose R is compact. Then $\exists n \geq 1$ (degree/valency) s.t. $\forall w \in S$, $\#f^{-1}(w) = n$ (with multiplicity).

D: (Owen's Signature)

Proof. For all $w_0 \in S$, $f^{-1}(w_0)$ is compact and discrete so finite, say $\{z_1, ..., z_q\} \neq \emptyset$. For $A \subseteq R$, and $w \in S$, let $n_A(w) = \sum_{z \in f^{-1}(w) \cap A} m_f(z)$.

R Hausdorff, so have q disjoint nbds M_i of z_i . Choose charts (φ_i, U_i) around z_i and (ψ, V) around w_0 . Wlog, $\psi(w_0) = 0$. Then $\psi f \varphi_i^{-1}$ is holo'c around $\varphi_i(z_i)$, so there exists a nbd H_i in $\mathbb C$ around $\varphi_i(z_i)$ s.t. $\psi f \varphi_i^{-1}(\zeta) = \psi f(z_i) + \beta_i(\zeta)^{m_f(z_i)}$ for some $\beta_i : H_i \to D(0, r_i)$ is biholo'c. Take $s = \min r_i$ and define $N_i = \varphi_i^{-1}(H_i)$. f is m_i -to-1 $N_i \to \psi^{-1}(D(0, s))$ and N_i are disjoint nbd of z_i in R.

Consider $R \setminus \bigcup_{i=1}^q N_i$. It's compact, so $M = S \setminus f(R \setminus \bigcup N_i)$ is open, so a nbd of w_0 . Take any $w \in \bigcap f(N_i) \cap M$ (nbd of w_0) with $R = \bigcup N_i \bigcup (R \setminus \bigcup N_i)$. Have $n_R(w) = n_{N_1}(w) + \cdots + n_{N_q}(w) + n_{R \setminus \bigcup U_i}(w) = m_f(z_1) + \cdots + m_f(z_q) + 0$, so n_R is loc.const.

Corollary 2.12. $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is biholo'c (bianalytic) iff f is a Möbius transformation.

2.4 Harmonic Functions

Definition 2.13. A func $u: U \to \mathbb{R}$, U domain, is harmonic if $u \in C^2(U)$ and $\nabla^2 u = 0$.

Theorem 2.14. u is harmonic on disk $D \implies \exists f: D \to \mathbb{C}$ holo'c with $u = \Re f$.

Corollary 2.15. If u is harmonic on a domain U, then u is smooth.

Corollary 2.16. If $U \to V$ holo'c on a domain and $u: V \to \mathbb{R}$ harmonic, then $u \circ g$ harmonic.

Definition 2.17. R is a Riemann surface. $u: R \to \mathbb{R}$ is harmonic if $u\varphi_{\alpha}^{-1}$ is harmonic for all charts φ_{α} .

Theorem 2.18 (Identity Thm for harmonic functions). Let R be a Riemann surface with $u, v : R \to \mathbb{R}$ both harmonic, then either $u \equiv v$ or $\{z \in R : u(z) = v(z)\}$ has empty interior.

Proof. ES1

Corollary 2.19 (Open Mapping for harmonic functions). Let R be a Riemann surface with a non-const harmonic function $R \to \mathbb{R}$, then u is an open map.

Proof. Pick $w \in W$ open and chart (φ, U) at w. Wlog, assume $U \subseteq W$ and $\varphi(U)$ is a disk, so there exists a holo'c function $f : \varphi(U) \to \mathbb{C}$ s.t. $\Re f = u\varphi^{-1}$. Note that f is non-constant, so open mapping theorem for holo'c functions, $f(\varphi(U))$ is open. Project to the real part, deduce that u(U) is open in \mathbb{R} , so u(w) is an interior point of W for all $w \in W$.

Corollary 2.20. If $u: R \to \mathbb{R}$ is a harmonic function and R is compact, then u is const.

3 Covering Maps

In this section, assume all topological spaces are Hausdorff, connected, and locally path-connected, unless stated otherwise.

3.1 Local Homeomorphisms

Definition 3.1. A map $f: X \to Y$ is a local-homeo if $\forall x \in X$, $\exists N_x$ open A open A

Lemma 3.2. Let $f: R \to S$ be non-const and analytic.

- (i) If $m_f(z) \equiv 1$ then f is a local homeo.
- (ii) If $Z = \{z \in R : m_f(z) > 1\}$, have $R \setminus Z$ RS so $f|_{R \setminus Z}$ is a local homeo

Proof. (i): For $z \in R$, pick charts $(\varphi, U), (\psi, W)$. Do stuff over \mathbb{C} and shrink the domain.

(ii): Z is discrete. $\phi(z)$ has an accumulation point, then identity theorem on \mathbb{C} and on riemann surfaces imply that f is const.

3.2 Paths and Lifts

Definition 3.3. Lift of paths

Theorem 3.4. For $f: \tilde{X} \to X$ local homeo and $\tilde{\gamma}, \tilde{\tilde{\gamma}}$ two lifts of γ s.t. $\tilde{\gamma}(0) = \tilde{\tilde{\gamma}}(0)$, then $\tilde{\gamma} \equiv \tilde{\tilde{\gamma}}$.

Proof. Define $E = \{t : \in [0,1] : \tilde{\gamma}(t) = \tilde{\tilde{\gamma}}(t)\}$. E is closed since \tilde{X} is Hausdorff and paths are cts. E is also open. Let $\tau \in E$. Pick nbd \tilde{N} around $\tilde{\gamma}(\tau)$ s.t. $f|_{\hat{N}}$ is inj. For $t \in (\tau - \delta, \tau + \delta) \cap I$, $\tilde{\gamma}(t), \tilde{\tilde{\gamma}}(t) \in \hat{N}$. f is inj on \hat{N} , so $\tilde{\gamma}(t) = \tilde{\tilde{\gamma}}(t)$

Definition 3.5. Covering maps

Lemma 3.6. The cardinality of the fiber is constant.

Proof. Equiv rel: $x \sim x'$ iff $|\pi^{-1}(x)| = |\pi^{-1}(x')|$. $|\pi^{-1}(x)|$ is locally constant. Done by connectedness.

Theorem 3.7. For non-const $f: R \to S$ analytic and R cpt, the map $f: R \setminus f^{-1}f(Z) \to S \setminus f(Z)$ is a covering map of Riemann surfaces.

Proof. Z is discrete and closed in a cpt set, so Z is finite, so f(Z) is finite. For all $w \in S$, $f^{-1}(w)$ is finite (cpt discrete), so $f^{-1}f(Z)$ is finite.

(& (Owen's Soognature)

3.3 Branched Covering Maps

Definition 3.8. If \tilde{S}, S are Riemann surfaces, a branched covering map $p: \tilde{S} \to S$ is where $\forall s \in S$ there exists a nbd N of s in S and a homeo $\Phi: N \to \Delta$ (unit disk) with $\Phi(s) = 0$ s.t. $p^{-1}(N) = \bigsqcup_{i \in I} U_i$ a disjoint union of (connected) open subsets of \tilde{S} , each with a homeo $\Psi_i: U_i \to \Delta$ s.t. $\forall z \in \Delta$, $\Phi p \Psi_i^{-1} = z^{m_i}$ for some $m_i \in \mathbb{N}$.

A branch point s of p is a point $s = \Psi_i^{-1}(0) \in \tilde{S}$ where $m_i > 1$. (The unique point $x \in U_i$ with p(x) = s) A critical value of p is $p(x) \in S$ for any branch point x.

e.g., any non-const analytic map $f: R \to S$ for R compact Riemann surface. (follows from thm 3.7 and valency theorem thm 2.11)

Theorem 3.9. Any compact orientable connected topological surface (without boundary) S is homeo to a genus g surface.

Theorem 3.10 (Riemann-Hurwitz formula). Let $f: R \to S$ non-const analytic map between compact Riemann surfaces. Suppose f has deg n. Then

$$\sum_{p \in R} (m_f(p) - 1) = 2(g_R - 1) - 2n(g_S - 1)$$

where g_R, g_S are genera of R, S resp.

Proof Sketch [Non-examinable.] Finite number of branch points $\{r_1, ..., r_k\}$ on R (where $m_f(r_i) > 1$). For any $w \in S$ not critical value, have $|f^{-1}(w)| = n$ by 2.11. Take a polygonal decomposition \mathcal{D} of S (existence by Rado) including all critical values in the vertices. Then the preimage $f^{-1}(D)$ is a polygonal decomposition of R with nF faces, nE edges and $nV - \sum_{j=1}^k (m_f(r_j) - 1)$. Compute.

In particular, $g_R \ge g_S$ (cf. ES2).

3.4 The (Topological) Monodromy Theorem

Theorem 3.11. Let $\pi: \tilde{X} \to X$ be a covering map, γ path in X and $p \in \tilde{X}$ any pt with $\pi(p) = \gamma(0)$. Then there exists a lift $\tilde{\gamma}$ of γ with $\tilde{\gamma}(0) = p$ (unique by thm 3.4)

Proof. (cf. Htpy lifting) \Box

Definition 3.12. Homotopy rel $\partial[0,1]$. (cf. algtop)

Definition 3.13. Simply connected (cf. algtop)

Theorem 3.14 (Topological Monodromy thm). Let $f: Y \to X$ be a local homeo. Suppose α, β are paths in X which are homotopic rel $\{0,1\}$. Take $y_0 \in Y$ with $f(y) = \alpha(0) = \beta(0) = x_0$. Suppose that any path γ in X with $\gamma(0) = x_0$ has a lift $\tilde{\gamma}(0) = y_0$. Then $\tilde{\alpha}, \tilde{\beta}$ are homotopic in Y rel $\{0,1\}$. In particular, $\tilde{\alpha}(1) = \tilde{\beta}(1)$.

Proof omitted.

Corollary 3.15. If $\pi: \tilde{X} \to X$ is a covering map and if X is simply connected, then π is a homeo.

4 Space of Germs

4.1 Abstract Analytic Continuation

In this section assume $D \subseteq \mathbb{C}$ is a fixed domain. Fix $w \in D$ and let $\mathfrak{F}_w = \{f_n \text{ elements } (f, U) \text{ on } D : w \in U\}$.

Definition 4.1. For (f, U), and (g, V) in \mathfrak{F}_w (so $w \in U \cap V$), say $(f, U) \sim_w (g, V)$ if f = g on some nbd of w (but not necessarily on all of $U \cap V$). This is an equiv rel for each $w \in D$. The equiv class in \sim_w containing (f, U) is the germ of f at w, denoted $[f]_w$.

Thus $[f_1]_{w_1} = [f_2]_{w_2}$ iff $w_1 = w_2$ and $f_1 = f_2$ on some nbd of w_1 .

Definition 4.2. The space of germs $\mathfrak{G}(D)$ is the set of all germs $[f]_w$ over all (f,U) on D and all elements $w \in D$.

Given a function element (f, U) on D, we write $[f]_U = \{[f]_z : z \in U\} \subseteq \mathfrak{G}(D)$. (so it comprises one \sim_z equiv class for each point $z \in U$)

Definition 4.3. The topology on $\mathfrak{G}(D)$ is generated by basis $[f]_U$ for (f,U) a function element on D, so $S \subseteq \mathfrak{G}(D)$ is open iff $S = \bigcup_{\alpha \in A} [f_\alpha]_{U_\alpha}$

This is indeed a basis. If V_1, V_2 open in $\mathfrak{G}(D)$ with $[f]_z \in V_1 \cap V_2$. Have U_i open in D and f_i holo'c on U_i s.t. $[f]_z$ is in $[f_i]_{U_i} \subseteq V_i$. So $z \in U_1 \cap U_2$ and $f = f_i$ on a nbd of N_i of z, so $[f]_{N_1 \cap N_2}$ is in $V_1 \cap V_2$

4.2 Topological Properties of &

Proposition 4.4. $\mathfrak{G}(D)$ is Hausdorff.

Proof. Suppose $[f]_z \neq [g]_w$.

If $z \neq w$ then take disjoint domains separating z, w, then $[f]_{U_1}$ and $[g]_{U_2}$ are disjoint open sets separating $[f]_z$, $[g]_w$.

If z = w and $[h]_v \in [f]_W \cap [g]_W$, where $(f, W) \in [f]_w$ and $(g, V) \in [g]_w$ and $w \in W$ (wlog assume W is a domain by shrinking). Then $[h]_v = [f]_v = [g]_v$, so f = g on a nbd of v and $v \in W$, so f = g on W, and W is a nbd of w. Contradiction.

Definition 4.5. The projection map $\pi: \mathfrak{G}(D) \to D$ is defined by $\pi([f]_z) = z$.

Proposition 4.6. π is a local homeo.

Proof. For (f, U) on D, consider the restriction $\pi: [f]_U \to U$. π is open [If V is open $[f]_U$, then $V = \bigcup_{\alpha} [f_{\alpha}]_{U_{\alpha}}, \pi(V) = \bigcup_{\alpha} U_{\alpha}]$. π is bijective. π is cts if U open in D then $\pi^{-1}(U) = \bigcup_{\alpha} [f_{\alpha}]_{U_{\alpha}}$, where f_{α} is any holo'c function on any subdomain of U.

Can put a Riemann surface structure on (conn. components of) $\mathfrak{G}(D)$. Charts (φ, V) for $V = [f]_U$ basic open set and $\varphi = \pi|_V : V \to U$. Transition maps id, so π is analytic.

Definition 4.7. The evaluation map $\epsilon : \mathfrak{G}(D) \to \mathbb{C}$ is $\epsilon([f]_z) = f(z)$.

This is well-defined and analytic as it is $f \circ \pi$ on $[f]_U$.

Theorem 4.8. Let (f, U) and (g, V) are function elements on D. Let γ be a path in D with $\gamma(0) \in U$, $\gamma(1) \in V$. Then (g, V) is an analytic continuation of (f, U) along γ iff there exists a path $\tilde{\gamma}$ in $\mathfrak{G}(D)$ with $\pi \circ \tilde{\gamma} = \gamma$ and $\tilde{\gamma}(0) = [f]_{\gamma(0)}$, $\tilde{\gamma}(1) = [g]_{\gamma(1)}$.

Proof. (\Rightarrow :) Have a chain of direct analytic continuation $(f_1, U_1), ..., (f_n, U_n)$ with $0 = t_0 \leq \cdots \leq t_n = 1$ with $\gamma([t_{j-1}, t_j]) \subseteq U_j$. Define $\tilde{\gamma}$ on $[t_{j-1}, t_j]$ by $\tilde{\gamma}(t) = [f_j]_{\gamma(t)}$. $f_{j-1} = f_j$ on a nbd of $\gamma(t_j)$. $\tilde{\gamma}$ is cts on $[t_{j-1}, t_j]$. [If $[h]_W$ is an open set, then $t \in \tilde{\gamma}^{-1}[h]_W$ iff $\gamma(t) \in W$ and $f_j = h$ on some nbd of N of $\gamma(t)$. γ is cts, so there is an open interval I in $[t_{j-1}, t_j]$ around t with $\gamma(I) \subseteq W \cap N$, so $I \subseteq \tilde{\gamma}^{-1}[h]_W$]. Can check directly that this is a lift.

): I (Owen's Signature)

 $(\Leftarrow:) \ \tilde{\gamma}[0,1] \ \text{is compact. Cover by finitely basic open sets} \ [f_1]_{U_1},...,[f_n]_{U_n} \ \text{with} \ U_i \ \text{disks. Get} \ 0 = t_0 \leq \cdots \leq t_n = 1 \ \text{with} \ \tilde{\gamma}[t_{j-1},t_j] \subseteq [f_j]_{U_j}. \ \text{Have} \ \tilde{\gamma}(0) = [f_1]_{\gamma(0)}. \ f = f_1 \ \text{on a nbd of} \ \gamma(0). \ \text{Similarly,} \ g = f_n \ \text{near} \ \gamma(1). \ \tilde{\gamma}(t_j) \in [f_j]_{U_j} \cap [f_{j+1}]_{U_{j+1}} \ \text{so same argument applies. So} \ (f_1,U_1),(f_2,U_2),...,(f_n,U_n) \ \text{direct analytic continuations.} \ \text{and} \ \gamma[t_{j-1},t_j] = \pi \tilde{\gamma}[t_{j-1},t_j] \subseteq \pi[f_j]_{U_j} = U_j \ \text{all} \ j.$

Corollary 4.9. If (g, V), (h, V) are analytic continuations of (f, U) along the same path γ , then $g \equiv h$ on V.

Proof. Get two lifts with the same starting point. The projection $\mathfrak{G}(D) \to D$ is a local homeo, so must have $[g]_{\gamma(1)} = [h]_{\gamma(1)}$, i.e, g = h on a nbd of $\gamma(1)$.

Corollary 4.10 (Classical Monodromy thm). Suppose D is a simply connected domain and (f, U) a function element on D which can be analytically continued along every path in D starting in U. Take (g, V), (h, V) analytic continuation along paths α, β in D with the same endpoints. Then $g \equiv h$ on V.

Proof. Have lifts $\tilde{\alpha}, \tilde{\beta}$. Lift the path homotopy $\alpha \simeq \beta$ to a path homotopy of $\tilde{\alpha} \simeq \tilde{\beta}$. So g = h on a nbd of $\alpha(1) = \beta(1)$.

Corollary 4.11. For any complete analytic function \mathfrak{F} , let $\mathfrak{G}_{\mathfrak{F}} = \bigcup_{(f,U)\in\mathfrak{F}} [f]_U \subseteq \mathfrak{G}(D)$. These are exactly the (path) components of $\mathfrak{G}(D)$.

Proof. $\mathfrak{G}_{\mathfrak{F}}$ is path conn by thm. Each $\mathfrak{G}_{\mathfrak{F}}$ is open and they partition $\mathfrak{G}(D)$.

So $\mathfrak{G}_{\mathfrak{F}}$ is a Riemann surface.

An analytic continuation along a path is equiv to a path in $\mathfrak{G}_{\mathfrak{F}}$ lifting the path. The eval map $\varepsilon:\mathfrak{G}_{\mathfrak{F}}\to\mathbb{C}$ is analytic. FOr finelt (f,U). ε is a single-valued extension of $f\circ\pi$ to all of $\mathfrak{G}_{\mathfrak{F}}$.

5 Periodic Functions

5.1 Periods

Definition 5.1. Let $f: \mathbb{C} \to X$ be any fin to a set. A period $\omega \in \mathbb{C}$ of f s.t. f(z+w) = f(z) for all $z \in \mathbb{C}$. Ω_f the set of all periods of f.

 Ω_f is an additive subgroup of \mathbb{C} . If X is Hausdorff and f is cts, then Ω_f is closed in \mathbb{C} .

Lemma 5.2. For non-const analytic map $f: \mathbb{C} \to S$ to a Riemann surface, the set Ω_f consists of isolated points.

Proof. Let g(z) = f(0). If $w = \alpha$ where $\alpha \in \Omega_f$ is an accumulation point, then have a sequence $w_i \to \alpha$, so $f(w_i) \to f(0)$, so f is const by identity theorem.

Theorem 5.3. Let $P \subseteq \mathbb{C}$ be an additive subgroup consisting of isolated pts. Then

- (0) $P = \{0\}$
- (1) $P = \mathbb{Z}\langle \omega \rangle$ for some $\omega \in \mathbb{C}^{\times}$
- (2) $P = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ for $\omega_i \in \mathbb{C}^{\times}$ and ω_i are \mathbb{R} -linearly independent, i.e., $w_2/w_1 \notin \mathbb{R}$.

: (Owen's Signature)

Proof. Suppose $P \neq \{0\}$. P is closed in \mathbb{C} . Pick $\omega_1 \in P \setminus \{0\}$ with minimal modulus. If $P = \mathbb{Z}\omega_1$, then done. Otherwise, choose $\omega_2 \in P \setminus \mathbb{Z}\omega_1$ with minimal modulus. If $\omega_2 \in \mathbb{R}\omega_1$, then $\omega_2 = (k + \delta)\omega_1$ for some $k \in \mathbb{Z}$ and $\delta \in [-1/2, 1/2]$, then $\omega_2 - k\omega_1 = \delta\omega_1 \in P$ and $|\delta\omega_1| < |\omega_1|$, so $\delta = 0$ by minimality. So ω_1, ω_2 is \mathbb{R} -linearly indep.

Now for any $\omega \in P$, write $\omega = \lambda_1 \omega_1 + \lambda_2 \omega_2$. As before, can write the coeff as some integer plus something in [-1/2, 1/2], so wlog assume $\lambda_1, \lambda_2 \in [-1/2, 1/2]$. Then $|\omega| \leq |\lambda_1||\omega_1| + |\lambda_2||\omega_2| \leq |\omega_2|$, but $\omega \in P$, so $\omega \in \mathbb{Z}\omega_1$.

5.2 Simply Periodic Functions

Let $f: \mathbb{C} \to X$ analytic with $\Omega_f = \mathbb{Z}\omega$, $\omega \neq 0$. Then $g(z) = f(z\omega)$ has periods $\Omega_g = \mathbb{Z}$.

Theorem 5.4. Let $q: \mathbb{C} \to \mathbb{C}^{\times}$ be $q(z) = e^{i2\pi z}$. Then given analytic function $f: \mathbb{C} \to \mathbb{C}_{\infty}$ with $\Omega_f = \mathbb{Z}$, there exists a unique analytic function $\bar{f}: \mathbb{C}^{\times} \to \mathbb{C}_{\infty}$ s.t. $f = \bar{f} \circ q$

Proof. Set $\bar{f}(e^{i2\pi z}) = f(z)$. Well defined. For any $w \in \mathbb{C}^{\times}$, can define log in a nbd of w on which $\bar{f}(w) = f((\log w)/2\pi i)$, so \bar{f} is analytic.

Corollary 5.5. With f as in thm 5.4. Suppose f has no poles on some horizontal strip $S = \{z : \alpha < \Im z < \beta\}$. Then $f(z) = \sum_{k=-\infty}^{\infty} a_k e^{i2\pi kz}$, which converges loc. uniformly on S.

Proof. Find \bar{f} as in thm 5.4. which has no poles on q(S) which is an annulus. Get Laurent expansion for \bar{f} which is loc. unif. conv. Substitute.

5.3 Doubly Periodic Functions

Definition 5.6. An elliptic function $f: \mathbb{C} \to \mathbb{C}_{\infty}$ is an analytic function with set of periods Ω_f of type (2) thm 5.3 (or constants). Such a function is determined by its values on a fundamental parallelogram. $\rho = \{z + t_1\omega_1 + t_2\omega_2 : t_1, t_2 \in [0, 1)\}$ for $z \in \mathbb{C}$. $(P = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2)$

Lemma 5.7. Any nonconst elliptic function has at least one pole.

Proof. If not, then $f: \mathbb{C} \to \mathbb{C}$ holo'c and bounded on a fundamental parallelogram, so constant by Liouville.

Definition 5.8. A lattice $L \subseteq \mathbb{C}$ is a discrete additive subgroup of \mathbb{R}^2 , i.e., P of type (2) in 5.3.

Definition 5.9. Given a lattice L, the L-torus is the Riemann surface \mathbb{C}/L .

Note that $q: \mathbb{C} \to \mathbb{C}/L$ is a covering map and is analytic.

Note that the map $f: S^1 \times S^1 \to \mathbb{C}/L$, $(e^{i2\pi\theta_1}, e^{i2\pi\theta_2}) \mapsto q(\theta_1\omega_1 + \theta_2\omega_2)$. So \mathbb{C}/L nad \mathbb{C}/L' are homeomorphic as top. spaces but need not be conformally equivalent.

Theorem 5.10. Let $q: \mathbb{C} \to \mathbb{C}/L$ be as above. Given elliptic function $f: \mathbb{C} \to \mathbb{C}_{\infty}$ with $\Omega_f \supseteq L$, then there exists a unique analytic $\bar{f}: \mathbb{C}/L \to \mathbb{C}_{\infty}$ s.t. $f = \bar{f} \circ q$.

(cf. thm 5.4)

Proof. Let $\bar{f}(q(z)) = f(z)$. This is well-defined by periodicity. \bar{f} is cts since for $V \subseteq \mathbb{C}_{\infty}$ open, $q^{-1}\bar{f}^{-1}(V) = f^{-1}(V)$. \bar{f} is analytic since on a chart $(q|_U)^{-1}$ for suff small U, have $\bar{f} \circ (q|_U)^{-1}$ analytic. Uniqueness: if \bar{f} is another choice, then $\bar{f}[z] = \bar{f}[z]$ is forced.

Corollary 5.11. There exists $n \geq 2$ s.t. f maps each fundamental parallelogram ρ_L , n-to-1 to \mathbb{C}_{∞} .

Proof. Have nonconst \bar{f} from \mathbb{C}/L compact in

5.4 Weierstrass ℘-functions

Definition 5.12. For lattice Ω , the Weierstrass \wp -function is given by

$$\wp_{\Omega}(z) = \frac{1}{z^2} + \sum_{\omega \in \Omega \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

Lemma 5.13. For t > 0, $\sum_{\omega \in \Omega \setminus \{0\}} \frac{1}{|\omega|} t$ converges iff t > 2.

Proof. Let $\Omega = \langle \omega_1, \omega_2 \rangle$, ω_1, ω_2 indep. Let $S = \{(\lambda_1, \lambda_2) \in \mathbb{R}^2 : |\lambda_1| + |\lambda_2| = 1\}$ (cpt) The map $(\lambda_1, \lambda_2) \mapsto (\lambda_1 \omega_1 + \lambda_2 \omega_2)$ is cts and non-zero on S, so there exists $0 < c \le C$ s.t. $\forall (k, l) \in \mathbb{Z}^3 \setminus \{(0, 0)\}$ $c(|k| + |l|) \le |k\omega_1 + l\omega_2| \le C(|k| + |l|)$. $[\lambda_1 = k/(|k| + |l|)]$. So $\sum_{(k, l) \in \mathbb{Z}^2 \setminus \{(0, 0)\}} \frac{1}{|k\omega_1 + l\omega_2|}$ conv iff $\sum_{m=1}^{\infty} \sum_{(k, l) \in \mathbb{Z}^2 \setminus \{(0, 0)\}, ||(k, l)||_1 = m} \frac{1}{(|k| + |l|)^t}$ conv iff $\sum_{m=1}^{\infty} 4m \frac{1}{m^t}$ conv. iff t > 2.

Theorem 5.14. The function \wp_{Ω} is meromorphic, has period set Ω , egen, and 2-to-1 on \mathbb{C}/Ω .

Proof. Fix r > 0 and let $z \in D(0, r)$. Estimate the tail when $\omega \in \Omega$ with $|\omega| \ge 2r$:

$$\left| \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right| \le \frac{\frac{r|\omega|}{2} + 2r|\omega|}{|\omega^4||z/\omega - 1|^2} \le \frac{5r}{2|\omega|^3} \frac{1}{1/4} = \frac{10r}{\omega^3}$$

So \wp_{Ω} converges locally (abs) uniformly, so meromorphic (loc. unif. lim of meromorphic function).

Differentiate term by term. Get $\wp_{\Omega}(z) = -2\sum_{\omega\in\Omega}\frac{1}{(z-\omega)^3}$ which is elliptic with period set including Ω . Consider $\wp_{\Omega}(z+\omega_1) = \wp_{\Omega}(z) + c$ Let $z = -\omega_1/2$, we see that c = 0 as the function is even. By considering poles, see that Ω contains the set of period.

Note that 0 is a double pole, so on \mathbb{C}/Ω has degree 2.

Note that \wp_{Ω} has a branch pt at 0 and at the zeros of \wp'_{Ω} . \wp'_{Ω} has a triple pole only at $\omega \in \Omega$, so degree 3 on \mathbb{C}/Ω . Odd function, so have zeros at $\omega_1/2$, $\omega_2/2$ and $(\omega_1 + \omega_2)/2$. They are simple since \wp'_{Ω} has deg 3. Can check Riemann-Hurwitz formula.

6 Uniformization

Let \tilde{X}, X be topological spaces. Recall covering space (I have recalled pls hurrry up.)

Theorem 6.1. For X conn and loc. simp. conn, there is a universal cover.

Definition 6.2. For $\pi: \tilde{X} \to X$ a (universal) covering map, a deck transformation is a homeo $f: \tilde{X} \to \tilde{X}$ s.t. $\pi f = f$. These form a group $\operatorname{Aut}_{\pi}(\tilde{X})$.

Suppose G acts on Y by homeomorphisms

Definition 6.3. Recall faithful, free. An action is called a covering space action if every $y \in Y$ has an open nbd U_y s.t. $g_1U_y \cap g_2U_y = \emptyset$ for all $g_1 \neq g_2$.

The quotient map is cts, surj, and open.

Theorem 6.4. If $\pi: \tilde{X} \to X$ is a covering map with \tilde{X} conn. and Hausdorff, then the action of $\operatorname{Aut}_{\pi}(X)$ on \tilde{X} is a covering space action.

Proof. For $y \in \tilde{X}$, pick nbd N of $\pi(y)$ which is evenly covered. Let U_y be the component of $\pi^{-1}(N)$ containing y. If $g(U_y) \cap U_y \neq \emptyset$, then find $p_1, p_2 \in U_y$ s.t. $gp_1 = p_2$, but π is inj on U_y , so $p_1 = p_2$, so g has a fixed point, so g = e.

Theorem 6.5. Y conn, loc. path conn, Hausdorff with a G acting on Y faithfully.

- (i) $q: Y \to Y/G$ is a covering map iff the action of G is a covering space action
- (ii) If G is a covering space action, then $G = \operatorname{Aut}_q(Y)$

[Warning: Y/G needs not be Hausdorff, cf. ES3.]

Proof. (ii) G acts transitively on the fiber $q^{-1}(z)$. For $y \in q^{-1}(z)$ and $\gamma \in \operatorname{Aut}_q(Y)$, have $q\gamma(y) = q(y)$, so there exists $g \in G$ with $\gamma(y) = g(y)$, so $\gamma = g$.

Corollary 6.6. If $\pi: \tilde{X} \to X$ is a universal cover, then $\tilde{X}/\operatorname{Aut}_{\pi}(\tilde{X}) \cong X$.

Proof. Define $h: \tilde{X}/\operatorname{Aut}_{\pi}(\tilde{X}) \to X, [y] \mapsto \pi(y)$. Then $\pi = hq$. h is open surjective, so check injectivity, i.e., $\pi y = \pi z \implies \exists \gamma \in \operatorname{Aut}_{\pi}(\tilde{X})$ with $\gamma y = z$, i.e., the action on fiber is transitive. This is true as \tilde{X} is simply connected.

Proposition 6.7. If X is a metric space and G acts by isometries and the action is a covering space action, then X/G is Hausdorff.

 $(-\circ \circ)$ (Owen's signature)

If R is a Riemann surface and $\pi: \tilde{R} \to R$ a universal cover, then \tilde{R} is a Riemann surface and π is analytic. If $\pi': \tilde{R}' \to R$ another universal cover with $\pi = \pi'H$. Have H, H^{-1} analytic.

Proposition 6.8. Any $g \in \operatorname{Aut}_{\pi}(\tilde{R})$ is analytic

Proof. Check directly. \Box

So $\operatorname{Aut}_{\pi}(\tilde{R})$ is a group of analytic automorphisms of \tilde{R} giving a covering space action. Conversely, if \tilde{R} is simply conn Riemann surface with charts ρ_i and G a group of analytic automorphisms of \tilde{R} which gives a covering space action, then $q: \tilde{R} \to \tilde{R}/G$ is a covering map. If \tilde{R}/G is Hausdorff, then it's a connected surface with charts of the form $\rho_i(q|_U)^{-1}$. It's a Riemann surface since transition functions are of the form $\rho_i(q|_{U_y})^{-1}(q|_{U_z})\rho_j^{-1}$ (the map in the middle is given by some element $g \in G$) Can check that R is analytically isomorphic to \tilde{R}/G . So Riemann surfaces are exactly simply connected Riemann surfaces/covering space actions of analytic automorphisms.

Theorem 6.9 (Uniformization). Up to analytic isomorphism, the simply connected Riemann surfaces are

- (i) \mathbb{C}
- (ii) \mathbb{C}_{∞}
- (iii) \mathbb{H} (upper half plane) or \mathbb{D} (unit disk)

These three are distinct.

Automorphisms

- (i) Automorphism groups of \mathbb{C}_{∞} is given by \mathcal{M} (Mobius transformations). All have fixed pts
- (ii) Aut(\mathbb{C}) = $\{az + b : a \neq 0\}$. Have fixed pt if $a \neq 1$. So look at subgroups of $\{z \mapsto z + b\} \cong \mathbb{C}$. For this to give a covering space action, consider 5.3, so we get $\mathbb{C}, \mathbb{C} \setminus \{0\}$ or various tori \mathbb{C}/L .

Corollary 6.10. Any Riemann surface R other than the above is given by \mathbb{H}/T for $T \leq \operatorname{Aut}(\mathbb{H}) = \{\frac{az+b}{cz+d} : a,b,c,d \in \mathbb{R}, \ ad-bc=1\}$ with a covering space action.

Proof. Schwarz lemma (cf. CA) \Longrightarrow Aut(\mathbb{H}) is this group. It acts on \mathbb{H} by isometries for $d_{\mathbb{H}}(z,w) = 2 \tanh^{-1} |\frac{z-w}{z-w}|$ (cf. Geo).

Corollary 6.11 (Riemann mapping thm). If U is a simply connected proper open subset of \mathbb{C} , then U is conformally equivalent to \mathbb{D} .

Proof. U is its own universal cover, so $U=U/\{\mathrm{id}\}$ so $U\cong\mathbb{C}$ or \mathbb{D} . Can't be \mathbb{C} since any inj holo'c map $\mathbb{C}\to\mathbb{C}$ is surj.

$$\begin{array}{c} () \\ \circ \\ \rightarrow \bigcirc \in \end{array}$$
 (Owen's Spider)