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1 The Complex Plane

): (Owen’s signature)

1.1 Review of Complex Analysis

• A domain U ⊆ C is an open (non-empty) and connected (hence path-connected) subset.

• Disk centered at z0 with radius r: D(z0, r).

• Punctured disk D′(z0, r).

If f : U → C is complex-diff, then detJ = |f ′|2, where J is the Jacobian of f regarded as a function on
R2.

Definition 1.1. f : U → C, U domain, is holo’c on U if f is C-diff for all z0 ∈ U .

Theorem 1.2 (Taylor). If f is holo’c on U and D(z0, r) ⊆ U , then f(z) =
∑∞
n=0 an(z− z0)

n converges
on D(z0, r) with an = f (n)(z0)/n!. Then f holo’c on U implies that f (n) holo’c on U .

Theorem 1.3 (Identity theorem). f, g be holo’c on a domain U , then either f ≡ g or for all z0 ∈ U
there exists r > 0 s.t. f(z) ̸= g(z) for all z ∈ D′(z0, r) ⊆ U .

Recall that if f : D′(z0, r) → C is holo’c then z0 is an isolated singularity. In this situation we have
the (unique) Laurent expansion at z0, f(z) =

∑∞
n=−∞ an(z − z0)

n on D′(z0, r).

Theorem 1.4. Exactly one occurs

• Removable

• Pole

• Isolated essential.

Definition 1.5. f : U → C (U domain) meromorphic if it’s holo’c away from poles.

Theorem 1.6 (Open mapping theorem). f holo’c on a domain U . Then f is either constant or an open
map.

Corollary 1.7 (Inverse function theorem). If f is holo’c on a domain, then

1. f injective =⇒ f−1 is holo’c with (f−1)′(z) = 1/f ′(f−1(z)).

2. if f ′(z0) ̸= 0 for some z0 ∈ U , then there exists an open nbd (nbd will always be open in this course)
N of z0 s.t. f : N → f(N) is biholomorphic (i.e., f and f−1 are both holo’c).
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1.2 Continuation of Power Series

Notation: ∆ := D(0, 1), and T = {z | |z| = 1}.
Suppose we have power series with radius of convergence R (not 0 or ∞) so f : D(z0, R) → C holo’c.

WLOG, assume R = 1 and power series as domain ∆.

Definition 1.8. A point z ∈ T is regular if ∃D(z, r) and g : D(z, r) → C holo’c s.t. f ≡ g on ∆∩D(z, r).
Otherwise, we say that z is singular.

So z being regular means that f can be extended holomorphically to f̄ on ∆ ∪D(z, r).

Example 1.9. (i) f(z) =
∑
n z

n diverges on T but the f(z) = 1/(1 − z) means that T \ {1} are
regular points

(ii) Take f(z) =
∑
n≥2

zn

n(n−1) is absolutely conv. on T . Note that 1 is singular. If it’s regular, then

f ′′ extends but f ′′ is the geometric series.

Remark 1. (i) The set of regular points is open in T .

(ii) For w ∈ ∆, let ρ(w) be radius of convergence of the Taylor series at w. For z ∈ T , have z regular
if and only if ρ(z/2) > 1/2.

Theorem 1.10. If f(z) =
∑
n≥0 anz

n has r.o.c. 1, then there is a singular point on T .

Proof. If not, then for all w ∈ T , ∃rw > 0 s.t. f can be extended holomorphically to fw on ∆∪D(w, rw).
Note that D(w, rw) ∩ D(w′, rw′) is convex (if non-empty). Let F : ∆ ∪

⋃
w∈T D(w, rw) → C be the

extension of f . F is well-defined. If z ∈ D(w, rw) ∩D(w′, rw′) then fw, fw′ both holo’c on D(w, rw) ∩
D(w′, rw′) ∪∆. By identity theorem, they agree. Now, we note that the domain of F includes D(o,R)
for some R > 1. (If not, take zn with 1|zn| < 1+1/n) and zn ̸∈ dom(F ), then by sequential compactness,
get a contradiction.) Contradiction with r.o.c being 1.

Corollary 1.11. If an ≥ 0 for all n, then 1 is singular.

Proof. For z ∈ T and each k, we have f (k)(z/2) =
∑∞
n=k n(n−1)...(n−k+1)an(z/2)

n−k. So |f (k)(z/2)| ≤
|f (k)(1/2)|, so ρ(z/2) ≥ ρ(1/2). If ρ(1/2) > 1/2, then all z ∈ T is regular. Contradiction.

1.3 Complex Logarithm

Notation: Lθ = {reiθ : r ≥ 0}.

Definition 1.12. For any α ∈ R, define logα : C \ Lα+π → C as logα(re
iθ) = ln r + iθ, where θ ∈

(α− π, α+ π).

1.4 Analytic Continuation (Plane)

Let D be a fixed domain of C.

Definition 1.13. A function element of D is a pair (f, U), where U is a subdomain (⊆ D) and f is a
holo’c function defined on U .

Definition 1.14. Let (f, U) and (g, V ) be function elements of D. Say (g, V ) is a direct analytic
continuation of (f, U) if U ∩ V ̸= ∅ and f ≡ g on U ∩ V .

Remark 2. The relation of being direct analytic continuation is relfexive and symmetric but not transitive.
For instance, f = logπ/2 on its domain, g = log0 on the right half plane, h = log−π/2 on its domain.

Definition 1.15. (g, V ) is an analytic continuation of (f, U) along some path γ if there exists function
elements (f, U) = (f1, U1), (f2, U2), ..., (fn, Un) = (g, V ) and a dissection {t0 = 0 ≤ t1 ≤ ... ≤ tn = 1} s.t.
(fi+1, Ui+1) is a direct analytic continuation of (fi, Ui) and γ([ti−1, ti]) ⊆ Ui. Write (f, U) ≈ (g, V ).

An equivalence class F is called a complete analytic function of D.

Note that if (g, V ) and (h, V ) are both analytic continuations of (f, U) along the same path γ, then
g ≡ h on V . (See ES1 or later).

Remark 3. Can do the same for meromorphic continuation.

⊂ | : (Owen’s Signature)
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1.5 INFORMAL Examples of Riemann Surfaces

1) Take disjoint copies C∗
k of C∗ indexed by k ∈ Z,so (z, k) ∈ C∗

k. On C∗
k define fk(z) = ln r + iθ for

z = reiθ and (2k − 1)π < θ ≤ (2k + 1)π. Glue different copies along the cut. Get a space S. Then
can define F : S → C given by (z, k) 7→ fk(z). F is cts, bijective and left invertible. Can do the same
for z1/n except get n copies of C∗.

3)
√
z2 − 1. Cut [−1, 1]. Take two copies of “cut complex plane”, P0, P1. Glue.

2) What’s the difference between a piano, a fish and a pot of glue? (?????????????????????????)

Ans You can tune a piano but you can’t tuna fish!!!

1.6 Abstract Riemann Surfaces

Definition 1.16. A Riemann Surface R is a (non-empty) connected Hausdorff top. space with a collec-
tion of charts (homeo to open subsets of C) such that the transition functions are holo’c.

Note the transition function τij = φiφ
−1
j is biholo’c. In particular, any Riemann surface is orientable.

Second countability is automatic from the definition. (Rado 1925)
Two atlases are said to be compatible (Same Riemann surface) if their union is an atlas.

..
˜ (Owen’s Signature)

Proposition 1.17. The Riemann sphere C∞ is the top. space C ∪ {∞} (open sets are open subsets of
C if ∞ ̸∈ U or U c is compact in C if ∞ ∈ U .) Charts φ0 : C → C and φ1(C∞ \ {0})

Given P (z, w) ∈ C[z, w] Consider S = {(z, w) ∈ C2 : P (z, w) = 0, (∂P/∂z, ∂P/∂w) ̸= (0, 0)}.
Then each conn. component is a Riemann surface. Suppose (z0, w0) ∈ S and ∂P/∂z ̸= 0 at z0. Get
fw0 = P (−, w0). By shrinking domain, assume fw0D(z0, r) → im(fw0) Let γ = ∂D(z0, r) oriented
counterclockwise.

⊃; (Owen’s Signature)

2 Maps on Riemann Surfaces

2.1 Analytic Maps

Definition 2.1. For Riemann Surfaces R,S, a cts function f : R→ S is analytic if for all charts (φ,U)
on R and (ψ,W ) on S, have (if U ∩ f−1(W ) ̸= ∅) ψfφ−1 : φ(U ∩ f−1(W )) → C is holomorphic.

Note that if R = S as top. spaces and f = id, then two atlases are compatible iff id is analytic.
Consider C̄ (C with chart given by conjugation), then any biholomorphic map f : C → C is not

analytic as a map f : C̄ → C, but the map f(z) = z̄ is analytic.
Let U be a domain in C. A cts function f : U → C∞ is analytic iff f is holo’c on U \ f−1({∞}) and

g = 1/f(z) is holo’c on U \ f−1({0}). If g is never 0, then f is holo’c. Otherwise |f(z)| → ∞ near the
zeros of g, i.e., f has poles, i.e., f is meromophic on U .

A map f : C∞ → C is analytic iff f : C → C and f(1/z) are both holomorphic. By compactness, f
is bounded, so f is constant by Liouville.

Definition 2.2. Let R be a Riemann surface. An analytic function f on R is f : R→ C (analytic), and
a meromorphic function g on R is g : R→ C∞ (analytic)

Proposition 2.3. f : C∞ → C∞ is analytic and nonconstant iff

f(z) =
c(z − α1) · · · (z − αm)

(z − β1) · · · (z − βn)

where c ̸= 0 and αi ̸= βj with ∞ 7→


∞ m > n

c m = n

0 m < n
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Proof. Analytic iff f(z) and f(1/z) are both meromorphic on C.
(⇐): Clear (⇒): If f(∞) ̸= ∞. Replace by 1/f . By continuity, there exists K > 0 s.t. no poles in

|z| > K, so we have a finite number of poles {ζ1, ..., ζi}. Have Laurent series around each pole. Let Qj(z)
be the principal part of the Laurent series around ζj . Let f̄ = f −Q1 − · · · −Qi, then f has removable
singularities at each ζj and holo’c elsewhere (including ∞). So f̄ : C∞ → C is analytic, so constant.

Theorem 2.4 (Identity theorem for Riemann surfaces). If f, g : R → S are analytic maps between
Riemann surfaces, then f ≡ g on R or ∀w ∈ R, ∃N open nbd of w s.t. f ̸= g on N \ {w}.

Proof. Let E = {w ∈ R : ∃N ∋ w, f ≡ g on N}, F = {w ∈ R : ∃N ∋ w, f ̸= g on N \ {w}}. Need to
show E ∪ F = R.

If f(w) ̸= g(w). Find U, V open and separating f(w), g(w), then N = f−1(U)∩f−1(V ) shows w ∈ F .
If f(w) = g(w). Take charts (φ,U) in R around w and (ψ,W ) in S around f(w). ψfφ−1 and ψgφ−1

are holo’c on φ(U ∩ f−1(U) ∩ g−1(V )) and agree at φ(w). By identity theorem in CA, there is a disk
D(φ(w), r) s.t. ψfφ−1, ψgφ−1φ−1 either agree or disagree except at φ(w). Let N = φ−1(D(φ(w), r)),
so w ∈ E ∪ F .

We are done by connectedness.

(}− : (Owen’s Signature with moustache)

Theorem 2.5 (Open Mapping Thm for Riemann surfaces). If f : R → S is a non-constant analytic
map, then W open in R =⇒ f(W ) is open in S.

Proof. Take w ∈ W and charts (φ,U), (ψ, V ) around w, f(w) resp. Let N = φ(U ∩ f−1 ∩W ), which is
open in C, and consider ψfφ−1. WLOG, assume N is connected, so by identity thm on C, either const
(contradiction) or ψfφ−1(N) is open in ψ(V ), so fφ−1(N) is open in V . Let Mw = φ−1(N) which is a
nbd of w in R with Mw ⊆W and f(w) ∈ f(Mw) is open in S, so f(w) is an interior point of f(W ).

Corollary 2.6. Let f : R→ S be analytic with R compact. Then either f is surjective (so S is compact)
or f is constant.

2.2 Local Representation of Analytic Maps

Let U ⊆ C be a domain and let f : U → C be a non-const holo’c function with z0 ∈ U . Locally,
f(z) = f(z0)+

∑
k≥1 ak(z−z0)k. Letm ≥ 1 be the smallest s.t. am ̸= 0. Then f(z) = f(z0)+(z−z0)mg(z)

where g(z0) ̸= 0.

Definition 2.7. The multiplicity of f at z0 is mf (z0) = m as above.

Note that the set of points with multiplicity > 1 form a discrete set. Also, the multiplicity is
multiplicative (w.r.t. composition).

Theorem 2.8 (Local mapping thm for domains). For non-const f : U → C holo’c, z0 ∈ U , m = mf (z0).
Then ∃ nbd N of z0 ∈ U and a biholomorphic β : N → D(0, δ) (for arbitrarily small δ > 0) s.t.
f(z) = f(z0) + β(z)m on N .

Proof. Write f(z) = f(z0) + (z − z0)
mg(z) on some D(z0, r) ⊆ U w/ g holo’c and non-zero at z0. Write

g(z0) = reiα ̸= 0. Have a holo’c branch logα. Define g−1(C \ Lπ+α ∩D(z0, r)) is a nbd of z0 on which g
is holo’c. Define β(z) = (z− z0)e

1/m logα g(z). Can see that β′(z0) ̸= 0. By IFT, have nbd N ′′ ⊆ N ′ w/
β : N ′′ → β(N ′′) biholo’c. Take β−1(D(0, δ)) and restrict.

Let f : R→ S be analytic and z0 ∈ R with charts (φ0, U0), (ψ0, V0) around z0 and f(z0) resp.

Definition 2.9. The multiplicity mf (z0) is mψ0fφ−1(φ0(z0)).

Lemma 2.10. This is independent of charts.

Proof. For another pair of charts (φ1, U1) and (ψ1, V1). Write ψ1fφ
−1
1 = (ψ1ψ

−1
0 )(ψ0fφ

−1
0 )(φ0φ

−1
1 ).

Done (multiplicative).
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2.3 Degree

Theorem 2.11 (Valency Thm). Let f : R → S be a non-const and analytic. Suppose R is compact.
Then ∃n ≥ 1 (degree/valency) s.t. ∀w ∈ S, #f−1(w) = n (with multiplicity).

D : (Owen’s Signature)

Proof. For all w0 ∈ S, f−1(w0) is compact and discrete so finite, say {z1, ..., zq} ≠ ∅. For A ⊆ R, and
w ∈ S, let nA(w) =

∑
z∈f−1(w)∩Amf (z).

R Hausdorff, so have q disjoint nbds Mi of zi. Choose charts (φi, Ui) around zi and (ψ, V ) around
w0. Wlog, ψ(w0) = 0. Then ψfφ−1

i is holo’c around φi(zi), so there exists a nbd Hi in C around φi(zi)
s.t. ψfφ−1

i (ζ) = ψf(zi) + βi(ζ)
mf (zi) for some βi : Hi → D(0, ri) is biholo’c. Take s = min ri and define

Ni = φ−1
i (Hi). f is mi-to-1 Ni → ψ−1(D(0, s)) and Ni are disjoint nbd of zi in R.

Consider R \
⋃q
i=1Ni. It’s compact, so M = S \ f(R \

⋃
Ni) is open, so a nbd of w0. Take any

w ∈
⋂
f(Ni) ∩M (nbd of w0) with R =

⊔
Ni

⊔
(R \

⋃
Ni). Have nR(w) = nN1

(w) + · · · + nNq
(w) +

nR\
⋃
Ui
(w) = mf (z1) + · · ·+mf (zq) + 0, so nR is loc.const.

Corollary 2.12. f : C∞ → C∞ is biholo’c (bianalytic) iff f is a Möbius transformation.

2.4 Harmonic Functions

Definition 2.13. A func u : U → R, U domain, is harmonic if u ∈ C2(U) and ∇2u = 0.

Theorem 2.14. u is harmonic on disk D =⇒ ∃f : D → C holo’c with u = ℜf .

Corollary 2.15. If u is harmonic on a domain U , then u is smooth.

Corollary 2.16. If U → V holo’c on a domain and u : V → R harmonic, then u ◦ g harmonic.

Definition 2.17. R is a Riemann surface. u : R→ R is harmonic if uφ−1
α is harmonic for all charts φα.

Theorem 2.18 (Identity Thm for harmonic functions). Let R be a Riemann surface with u, v : R → R
both harmonic, then either u ≡ v or {z ∈ R : u(z) = v(z)} has empty interior.

Proof. ES1

Corollary 2.19 (Open Mapping for harmonic functions). Let R be a Riemann surface with a non-const
harmonic function R→ R, then u is an open map.

Proof. Pick w ∈ W open and chart (φ,U) at w. Wlog, assume U ⊆ W and φ(U) is a disk, so there
exists a holo’c function f : φ(U) → C s.t. ℜf = uφ−1. Note that f is non-constant, so open mapping
theorem for holo’c functions, f(φ(U)) is open. Project to the real part, deduce that u(U) is open in R,
so u(w) is an interior point of W for all w ∈W .

Corollary 2.20. If u : R→ R is a harmonic function and R is compact, then u is const.

3 Covering Maps

In this section, assume all topological spaces are Hausdorff, connected, and locally path-connected, unless
stated otherwise.

3.1 Local Homeomorphisms

Definition 3.1. A map f : X → Y is a local-homeo if ∀x ∈ X, ∃Nx open nbd of x s.t. f(Nx) is open
in Y and f |Nx

: Nx → f(Nx) is a homeo.

Lemma 3.2. Let f : R→ S be non-const and analytic.

(i) If mf (z) ≡ 1 then f is a local homeo.

(ii) If Z = {z ∈ R : mf (z) > 1}, have R \ Z RS so f |R\Z is a local homeo

Proof. (i): For z ∈ R, pick charts (φ,U), (ψ,W ). Do stuff over C and shrink the domain.
(ii): Z is discrete. ϕ(z) has an accumulation point, then identity theorem on C and on riemann

surfaces imply that f is const.
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3.2 Paths and Lifts

Definition 3.3. Lift of paths

Theorem 3.4. For f : X̃ → X local homeo and γ̃, ˜̃γ two lifts of γ s.t. γ̃(0) = ˜̃γ(0), then γ̃ ≡ ˜̃γ.

Proof. Define E = {t :∈ [0, 1] : γ̃(t) = ˜̃γ(t)}. E is closed since X̃ is Hausdorff and paths are cts. E is
also open. Let τ ∈ E. Pick nbd Ñ around γ̃(τ) s.t. f |N̂ is inj. For t ∈ (τ − δ, τ + δ) ∩ I, γ̃(t), ˜̃γ(t) ∈ N̂ .

f is inj on N̂ , so γ̃(t) = ˜̃γ(t)

Definition 3.5. Covering maps

Lemma 3.6. The cardinality of the fiber is constant.

Proof. Equiv rel: x ∼ x′ iff |π−1(x)| = |π−1(x′)|. |π−1(x)| is locally constant. Done by connectedness.

Theorem 3.7. For non-const f : R → S analytic and R cpt, the map f : R \ f−1f(Z) → S \ f(Z) is a
covering map of Riemann surfaces.

Proof. Z is discrete and closed in a cpt set, so Z is finite, so f(Z) is finite. For all w ∈ S, f−1(w) is
finite (cpt discrete), so f−1f(Z) is finite.

(& (Owen’s Soognature)

3.3 Branched Covering Maps

Definition 3.8. If S̃, S are Riemann surfaces, a branched covering map p : S̃ → S is where ∀s ∈ S there
exists a nbd N of s in S and a homeo Φ : N → ∆ (unit disk) with Φ(s) = 0 s.t. p−1(N) =

⊔
i∈I Ui

a disjoint union of (connected) open subsets of S̃, each with a homeo Ψi : Ui → ∆ s.t. ∀z ∈ ∆,
ΦpΨ−1

i = zmi for some mi ∈ N.
A branch point s of p is a point s = Ψ−1

i (0) ∈ S̃ where mi > 1. (The unique point x ∈ Ui with
p(x) = s) A critical value of p is p(x) ∈ S for any branch point x.

e.g., any non-const analytic map f : R → S for R compact Riemann surface. (follows from thm 3.7
and valency theorem thm 2.11)

Theorem 3.9. Any compact orientable connected topological surface (without boundary) S is homeo to
a genus g surface.

Theorem 3.10 (Riemann-Hurwitz formula). Let f : R → S non-const analytic map between compact
Riemann surfaces. Suppose f has deg n. Then∑

p∈R
(mf (p)− 1) = 2(gR − 1)− 2n(gS − 1)

where gR, gS are genera of R,S resp.

Proof Sketch [Non-examinable. ] Finite number of branch points {r1, ..., rk} on R (where mf (ri) > 1).
For any w ∈ S not critical value, have |f−1(w)| = n by 2.11. Take a polygonal decomposition D of S
(existence by Rado) including all critical values in the vertices. Then the preimage f−1(D) is a polygonal

decomposition of R with nF faces, nE edges and nV −
∑k
j=1(mf (rj)− 1). Compute.

In particular, gR ≥ gS (cf. ES2).
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3.4 The (Topological) Monodromy Theorem

Theorem 3.11. Let π : X̃ → X be a covering map, γ path in X and p ∈ X̃ any pt with π(p) = γ(0).
Then there exists a lift γ̃ of γ with γ̃(0) = p (unique by thm 3.4)

Proof. (cf. Htpy lifting)

Definition 3.12. Homotopy rel ∂[0, 1]. (cf. algtop)

Definition 3.13. Simply connected (cf. algtop)

Theorem 3.14 (Topological Monodromy thm). Let f : Y → X be a local homeo. Suppose α, β are paths
in X which are homotopic rel {0, 1}. Take y0 ∈ Y with f(y) = α(0) = β(0) = x0. Suppose that any
path γ in X with γ(0) = x0 has a lift γ̃(0) = y0. Then α̃, β̃ are homotopic in Y rel {0, 1}. In particular,
α̃(1) = β̃(1).

Proof omitted.

Corollary 3.15. If π : X̃ → X is a covering map and if X is simply connected, then π is a homeo.

Proof. ES2.

.
≀ : (Owen’s Signature)

4 Space of Germs

4.1 Abstract Analytic Continuation

In this section assume D ⊆ C is a fixed domain. Fix w ∈ D and let Fw = {fn elements (f, U) on D :
w ∈ U}.

Definition 4.1. For (f, U), and (g, V ) in Fw (so w ∈ U ∩V ), say (f, U) ∼w (g, V ) if f = g on some nbd
of w (but not necessarily on all of U ∩ V ). This is an equiv rel for each w ∈ D. The equiv class in ∼w
containing (f, U) is the germ of f at w, denoted [f ]w.

Thus [f1]w1
= [f2]w2

iff w1 = w2 and f1 = f2 on some nbd of w1.

Definition 4.2. The space of germs G(D) is the set of all germs [f ]w over all (f, U) on D and all
elements w ∈ D.

Given a function element (f, U) on D, we write [f ]U = {[f ]z : z ∈ U} ⊆ G(D). (so it comprises one
∼z equiv class for each point z ∈ U)

Definition 4.3. The topology on G(D) is generated by basis [f ]U for (f, U) a function element on D,
so S ⊆ G(D) is open iff S =

⋃
α∈A[fα]Uα

This is indeed a basis. If V1, V2 open in G(D) with [f ]z ∈ V1 ∩ V2. Have Ui open in D and fi holo’c
on Ui s.t. [f ]z is in [fi]Ui ⊆ Vi. So z ∈ U1 ∩U2 and f = fi on a nbd of Ni of z, so [f ]N1∩N2 is in V1 ∩ V2

4.2 Topological Properties of G

Proposition 4.4. G(D) is Hausdorff.

Proof. Suppose [f ]z ̸= [g]w.
If z ̸= w then take disjoint domains separating z, w, then [f ]U1

and [g]U2
are disjoint open sets

separating [f ]z, [g]w.
If z = w and [h]v ∈ [f ]W ∩ [g]W , where (f,W ) ∈ [f ]w and (g, V ) ∈ [g]w and w ∈W (wlog assume W

is a domain by shrinking). Then [h]v = [f ]v = [g]v, so f = g on a nbd of v and v ∈ W , so f = g on W ,
and W is a nbd of w. Contradiction.

Definition 4.5. The projection map π : G(D) → D is defined by π([f ]z) = z.

Proposition 4.6. π is a local homeo.
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Proof. For (f, U) on D, consider the restriction π : [f ]U → U . π is open [If V is open [f ]U , then
V =

⋃
α[fα]Uα

, π(V ) =
⋃
α Uα]. π is bijective. π is cts if U open in D then π−1(U) =

⋃
α[fα]Uα

, where
fα is any holo’c function on any subdomain of U .

Can put a Riemann surface structure on (conn. components of) G(D). Charts (φ, V ) for V = [f ]U
basic open set and φ = π|V : V → U . Transition maps id, so π is analytic.

Definition 4.7. The evaluation map ϵ : G(D) → C is ϵ([f ]z) = f(z).

This is well-defined and analytic as it is f ◦ π on [f ]U .

Theorem 4.8. Let (f, U) and (g, V ) are function elements on D. Let γ be a path in D with γ(0) ∈ U ,
γ(1) ∈ V . Then (g, V ) is an analytic continuation of (f, U) along γ iff there exists a path γ̃ in G(D)
with π ◦ γ̃ = γ and γ̃(0) = [f ]γ(0), γ̃(1) = [g]γ(1).

Proof. (⇒:)Have a chain of direct analytic continuation (f1, U1), ..., (fn, Un) with 0 = t0 ≤ · · · ≤ tn = 1
with γ([tj−1, tj ]) ⊆ Uj . Define γ̃ on [tj−1, tj ] by γ̃(t) = [fj ]γ(t). fj−1 = fj on a nbd of γ(tj). γ̃ is cts on
[tj−1, tj ]. [If [h]W is an open set, then t ∈ γ̃−1[h]W iff γ(t) ∈ W and fj = h on some nbd of N of γ(t).
γ is cts, so there is an open interval I in [tj−1, tj ] around t with γ(I) ⊆ W ∩N , so I ⊆ γ̃−1[h]W ]. Can
check directly that this is a lift.

) : ג (Owen’s Signature)

(⇐:) γ̃[0, 1] is compact. Cover by finitely basic open sets [f1]U1
, ..., [fn]Un

with Ui disks. Get 0 = t0 ≤
· · · ≤ tn = 1 with γ̃[tj−1, tj ] ⊆ [fj ]Uj

. Have γ̃(0) = [f1]γ(0). f = f1 on a nbd of γ(0). Similarly, g = fn
near γ(1). γ̃(tj) ∈ [fj ]Uj

∩ [fj+1]Uj+1
so same argument applies. So (f1, U1), (f2, U2), ..., (fn, Un) direct

analytic continuations. and γ[tj−1, tj ] = πγ̃[tj−1, tj ] ⊆ π[fj ]Uj
= Uj all j.

Corollary 4.9. If (g, V ), (h, V ) are analytic continuations of (f, U) along the same path γ, then g ≡ h
on V .

Proof. Get two lifts with the same starting point. The projection G(D) → D is a local homeo, so must
have [g]γ(1) = [h]γ(1), i.e, g = h on a nbd of γ(1).

Corollary 4.10 (Classical Monodromy thm). Suppose D is a simply connected domain and (f, U) a
function element on D which can be analytically continued along every path in D starting in U . Take
(g, V ), (h, V ) analytic continuation along paths α, β in D with the same endpoints. Then g ≡ h on V .

Proof. Have lifts α̃, β̃. Lift the path homotopy α ≃ β to a path homotopy of α̃ ≃ β̃. So g = h on a nbd
of α(1) = β(1).

Corollary 4.11. For any complete analytic function F, let GF =
⋃

(f,U)∈F[f ]U ⊆ G(D). These are

exactly the (path) components of G(D).

Proof. GF is path conn by thm. Each GF is open and they partition G(D).

So GF is a Riemann surface.
An analytic continuation along a path is equiv to a path in GF lifting the path. The eval map

ε : GF → C is analytic. FOr fn elt (f, U). ε is a single-valued extension of f ◦ π to all of GF.

5 Periodic Functions

5.1 Periods

Definition 5.1. Let f : C → X be any fn to a set. A period ω ∈ C of f s.t. f(z + w) = f(z) for all
z ∈ C. Ωf the set of all periods of f .

Ωf is an additive subgroup of C. If X is Hausdorff and f is cts, then Ωf is closed in C.

Lemma 5.2. For non-const analytic map f : C → S to a Riemann surface, the set Ωf consists of
isolated points.

Proof. Let g(z) = f(0). If w = α where α ∈ Ωf is an accumulation point, then have a sequence wi → α,
so f(wi) → f(0), so f is const by identity theorem.
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Theorem 5.3. Let P ⊆ C be an additive subgroup consisting of isolated pts. Then

(0) P = {0}

(1) P = Z⟨ω⟩ for some ω ∈ C×

(2) P = Zω1 + Zω2 for ωi ∈ C× and ωi are R-linearly independent, i.e., w2/w1 /∈ R.

| : (Owen’s Signature)

Proof. Suppose P ̸= {0}. P is closed in C. Pick ω1 ∈ P \ {0} with minimal modulus. If P = Zω1, then
done. Otherwise, choose ω2 ∈ P \ Zω1 with minimal modulus. If ω2 ∈ Rω1, then ω2 = (k + δ)ω1 for
some k ∈ Z and δ ∈ [−1/2, 1/2], then ω2 − kω1 = δω1 ∈ P and |δω1| < |ω1|, so δ = 0 by minimality. So
ω1, ω2 is R-linearly indep.

Now for any ω ∈ P , write ω = λ1ω1 + λ2ω2. As before, can write the coeff as some integer plus
something in [−1/2, 1/2], so wlog assume λ1, λ2 ∈ [−1/2, 1/2]. Then |ω| ≤ |λ1||ω1|+ |λ2||ω2| ≤ |ω2|, but
ω ∈ P , so ω ∈ Zω1.

5.2 Simply Periodic Functions

Let f : C → X analytic with Ωf = Zω, ω ̸= 0. Then g(z) = f(zω) has periods Ωg = Z.
Theorem 5.4. Let q : C → C× be q(z) = ei2πz. Then given analytic function f : C → C∞ with Ωf = Z,
there exists a unique analytic function f̄ : C× → C∞ s.t. f = f̄ ◦ q
Proof. Set f̄(ei2πz) = f(z). Well defined. For any w ∈ C×, can define log in a nbd of w on which
f̄(w) = f((logw)/2πi), so f̄ is analytic.

Corollary 5.5. With f as in thm 5.4. Suppose f has no poles on some horizontal strip S = {z : α <
ℑz < β}. Then f(z) =

∑∞
k=−∞ ake

i2πkz, which converges loc. uniformly on S.

Proof. Find f̄ as in thm 5.4. which has no poles on q(S) which is an annulus. Get Laurent expansion
for f̄ which is loc. unif. conv. Substitute.

5.3 Doubly Periodic Functions

Definition 5.6. An elliptic function f : C → C∞ is an analytic function with set of periods Ωf of type
(2) thm 5.3 (or constants). Such a function is determined by its values on a fundamental parallelogram.
ρ = {z + t1ω1 + t2ω2 : t1, t2 ∈ [0, 1)} for z ∈ C. (P = Zω1 + Zω2)

Lemma 5.7. Any nonconst elliptic function has at least one pole.

Proof. If not, then f : C → C holo’c and bounded on a fundamental parallelogram, so constant by
Liouville.

Definition 5.8. A lattice L ⊆ C is a discrete additive subgroup of R2, i.e., P of type (2) in 5.3.

Definition 5.9. Given a lattice L, the L−torus is the Riemann surface C/L.
Note that q : C → C/L is a covering map and is analytic.
Note that the map f : S1 × S1 → C/L, (ei2πθ1 , ei2πθ2) 7→ q(θ1ω1 + θ2ω2). So C/L nad C/L′ are

homeomorphic as top. spaces but need not be conformally equivalent.

Theorem 5.10. Let q : C → C/L be as above. Given elliptic function f : C → C∞ with Ωf ⊇ L, then
there exists a unique analytic f̄ : C/L→ C∞ s.t. f = f̄ ◦ q.

(cf. thm 5.4)

Proof. Let f̄(q(z)) = f(z). This is well-defined by periodicity. f̄ is cts since for V ⊆ C∞ open,
q−1f̄−1(V ) = f−1(V ). f̄ is analytic since on a chart (q|U )−1 for suff small U , have f̄ ◦ (q|U )−1 analytic.

Uniqueness: if ¯̄f is another choice, then ¯̄f [z] = f̄ [z] is forced.

Corollary 5.11. There exists n ≥ 2 s.t. f maps each fundamental parallelogram ρL, n-to-1 to C∞.

Proof. Have nonconst f̄ from C/L compact in

I
∼∗∗H

I ⋏
⌣ H (Owen’s Signature)
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5.4 Weierstrass ℘-functions

Definition 5.12. For lattice Ω, the Weierstrass ℘-function is given by

℘Ω(z) =
1

z2
+

∑
ω∈Ω\{0}

(
1

(z − ω)2
− 1

ω2

)

Lemma 5.13. For t > 0,
∑
ω∈Ω\{0}

1
|ω| t converges iff t > 2.

Proof. Let Ω = ⟨ω1, ω2⟩, ω1, ω2 indep. Let S = {(λ1, λ2) ∈ R2 : |λ1| + |λ2| = 1} (cpt) The map
(λ1, λ2) 7→ (λ1ω1 + λ2ω2) is cts and non-zero on S, so there exists 0 < c ≤ C s.t. ∀(k, l) ∈ Z3 \ {(0, 0)}
c(|k| + |l|) ≤ |kω1 + lω2| ≤ C(|k| + |l|). [λ1 = k/(|k| + |l|)]. So

∑
(k,l)∈Z2\{(0,0)}

1
|kω1+lω2| conv iff∑

(k,l)∈Z2\{(0,0)}
1

(|k|+|l|)t conv iff
∑∞
m=1

∑
(k,l)∈Z2\{(0,0)},∥(k,l)∥1=m

1
(|k|+|l|)t conv iff

∑∞
m=1 4m

1
mt conv.

iff t > 2.

Theorem 5.14. The function ℘Ω is meromorphic, has period set Ω, egen, and 2-to-1 on C/Ω.

Proof. Fix r > 0 and let z ∈ D(0, r). Estimate the tail when ω ∈ Ω with |ω| ≥ 2r:∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ r|ω|
2 + 2r|ω|

|ω4||z/ω − 1|2
≤ 5r

2|ω|3
1

1/4
=

10r

ω3

So ℘Ω converges locally (abs) uniformly, so meromorphic (loc. unif. lim of meromorphic function).
Differentiate term by term. Get ℘Ω(z) = −2

∑
ω∈Ω

1
(z−ω)3 which is elliptic with period set including

Ω. Consider ℘Ω(z + ω1) = ℘Ω(z) + c Let z = −ω1/2, we see that c = 0 as the function is even. By
considering poles, see that Ω contains the set of period.

Note that 0 is a double pole, so on C/Ω has degree 2.

Note that ℘Ω has a branch pt at 0 and at the zeros of ℘′
Ω. ℘

′
Ω has a triple pole only at ω ∈ Ω, so

degree 3 on C/Ω. Odd function, so have zeros at ω1/2, ω2/2 and (ω1 + ω2)/2. They are simple since ℘′
Ω

has deg 3. Can check Riemann-Hurwitz formula.

6 Uniformization
↼
⊙⊙
·
⌢ (Owen’s signature)

Let X̃,X be topological spaces. Recall covering space (I have recalled pls hurrry up.)

Theorem 6.1. For X conn and loc. simp. conn, there is a universal cover.

Definition 6.2. For π : X̃ → X a (universal) covering map, a deck transformation is a homeo f : X̃ → X̃
s.t. πf = f . These form a group Autπ(X̃).

Suppose G acts on Y by homeomorphisms

Definition 6.3. Recall faithful, free. An action is called a covering space action if every y ∈ Y has an
open nbd Uy s.t. g1Uy ∩ g2Uy = ∅ for all g1 ̸= g2.

The quotient map is cts, surj, and open.

Theorem 6.4. If π : X̃ → X is a covering map with X̃ conn. and Hausdorff, then the action of
Autπ(X) on X̃ is a covering space action.

Proof. For y ∈ X̃, pick nbd N of π(y) which is evenly covered. Let Uy be the component of π−1(N)
containing y. If g(Uy) ∩ Uy ̸= ∅, then find p1, p2 ∈ Uy s.t. gp1 = p2, but π is inj on Uy, so p1 = p2, so g
has a fixed point, so g = e.

Theorem 6.5. Y conn, loc. path conn, Hausdorff with a G acting on Y faithfully.

(i) q : Y → Y/G is a covering map iff the action of G is a covering space action

(ii) If G is a covering space action, then G = Autq(Y )
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[Warning: Y/G needs not be Hausdorff, cf. ES3.]

Proof. (ii) G acts transitively on the fiber q−1(z). For y ∈ q−1(z) and γ ∈ Autq(Y ), have qγ(y) = q(y),
so there exists g ∈ G with γ(y) = g(y), so γ = g.

Corollary 6.6. If π : X̃ → X is a universal cover, then X̃/Autπ(X̃) ∼= X.

Proof. Define h : X̃/Autπ(X̃) → X, [y] 7→ π(y). Then π = hq. h is open surjective, so check injectivity,
i.e., πy = πz =⇒ ∃γ ∈ Autπ(X̃) with γy = z, i.e., the action on fiber is transitive. This is true as X̃ is
simply connected.

Proposition 6.7. If X is a metric space and G acts by isometries and the action is a covering space
action, then X/G is Hausdorff.

(−◦◦ (Owen’s signature)

If R is a Riemann surface and π : R̃ → R a universal cover, then R̃ is a Riemann surface and π is
analytic. If π′ : R̃′ → R another universal cover with π = π′H. Have H,H−1 analytic.

Proposition 6.8. Any g ∈ Autπ(R̃) is analytic

Proof. Check directly.

So Autπ(R̃) is a group of analytic automorphisms of R̃ giving a covering space action. Conversely, if
R̃ is simply conn Riemann surface with charts ρi and G a group of analytic automorphisms of R̃ which
gives a covering space action, then q : R̃ → R̃/G is a covering map. If R̃/G is Hausdorff, then it’s a
connected surface with charts of the form ρi(q|U )−1. It’s a Riemann surface since transition functions
are of the form ρi(q|Uy )

−1(q|Uz )ρ
−1
j (the map in the middle is given by some element g ∈ G) Can check

that R is analytically isomorphic to R̃/G. So Riemann surfaces are exactly simply connected Riemann
surfaces/covering space actions of analytic automorphisms.

Theorem 6.9 (Uniformization). Up to analytic isomorphism, the simply connected Riemann surfaces
are

(i) C

(ii) C∞

(iii) H (upper half plane) or D (unit disk)

These three are distinct.
Automorphisms

(i) Automorphism groups of C∞ is given by M (Mobius transformations). All have fixed pts

(ii) Aut(C) = {az + b : a ̸= 0}. Have fixed pt if a ̸= 1. So look at subgroups of {z 7→ z + b} ∼= C. For
this to give a covering space action, consider 5.3, so we get C,C \ {0} or various tori C/L.

Corollary 6.10. Any Riemann surface R other than the above is given by H/T for T ≤ Aut(H) =
{az+bcz+d : a, b, c, d ∈ R, ad− bc = 1} with a covering space action.

Proof. Schwarz lemma (cf. CA) =⇒ Aut(H) is this group. It acts on H by isometries for dH(z, w) =
2 tanh−1 | z−wz−w̄ | (cf. Geo).

Corollary 6.11 (Riemann mapping thm). If U is a simply connected proper open subset of C, then U
is conformally equivalent to D.

Proof. U is its own universal cover, so U = U/{id} so U ∼= C or D. Can’t be C since any inj holo’c map
C → C is surj.

\
∋

()
◦
⊙

/
∈ (Owen’s Spider)
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