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Review of Metric Spaces

Notation: open ball of radius δ will be denoted Bδ(x).
Revised some results about metric spaces.

1 Brouwer’s Fixed Point Theorem

A proof of IVT using a compactness argument:

Lemma 1.1 (Discrete IVT). Let f : {0, 1, ..., n} → R with f(0) < 0 and f(n) ≥ 0, then ∃m s.t.
f(m− 1) < 0, f(m) ≥ 0.

Proof. Can prove it using WOP.
Alternatively (an idea which will be useful later), define g : {0, ..., n} → R by g(m) = 1 if f(m) ≥ 0

and 0 if f(m) < 0. Then g(n)− g(0) =
∑

n(g(m)− g(m− 1)), so there exists g(m)− g(m− 1) > 0, and
we are done.

Now can prove IVT. F : [a, b] → R, F (a) < 0, F (b) > 0, consider fn : {0, ..., n} → R defined by
fn(m) = F (a+ m

n (b− a)). Apply lemma, get a sequence xn s.t. F (xn) ≥ 0 and F (xn − (b− a)/n) < 0.
Apply Bolzano-Weierstrass.

Theorem 1.2 (Brouwer’s fixed point theorem in one dimension). If f : [a, b] → [a, b] cts, then f has a
fixed point.

This is a trivial consequence of IVT.

Remark 1. In fact, Brouwer’s fixed point theorem in one dimension is equivalent to IVT.

We will generalize this result.

Theorem 1.3. TFAE,

(a) Any continuous self maps of D2 has a fixed point. (2D Brouwer’s fixed point theorem)

(b) There is no retraction D2 → ∂D2. (No retraction theorem)

(c) Let T be a (closed solid) triangle with sides I1, I2, I3. Let A1, A2, A3 be closed subsets of T s.t.
Ij ⊆ Aj and A1 ∪A2 ∪A3 = T . Then A1 ∩A2 ∩A3 ̸= ∅.

(d) There is no continuous function f : T → ∂T s.t. ∀x ∈ Ij, f(x) ∈ Ij. (No quasi-retraction theorem)

Proof. (a)⇒(b): Suppose (b) fails and f : D → ∂D is a retraction. Let σ ̸= id be a non-trivial rotation
about (0, 0). Then σ ◦ f : D → D is continuous and has no fixed points. Contradiction.

(b)⇒(a): standard proof of Brouwer’s fixed point theorem from no retraction theorem. Construct a
retraction by mapping x ∈ D to the intersection of the ray from f(x) to x with ∂D.

(a)⇒(d): Suppose (d) fails. Take T to be an equilateral triangle with vertices 1, ω, ω2 ∈ C (cube
roots of unity). For each polar angle θ, define ρ(θ) = d(0, x), where x is the point on ∂T with argument
θ. ρ is cts in θ and 1/2 ≤ ρ(θ) ≤ 1 for all θ. Define φ : D → T , φ(z) = ρ(θ)z if z ∈ ρ(θ)eiθ This is a
homeomorphism. φ(∂D) = ∂T . Now let g : D → D, g = φ−1 ◦ f ◦ φ. Then φ−1(Ij) is a 2π/3 radian
arc of ∂D. If x ∈ φ−1(Ij) and φ(x) ∈ I, then f(φ(x)) ∈ Ij , so g(x) =∈ φ−1(Ij). Also x ∈ D, have
φ(x) ∈ T ⇒ f(φ(x)) ∈ ∂T ⇒ g(x) ∈ ∂D. Let π be the antipodal map, then π ◦ g has no fixed points.
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(c)⇒(d): Suppose f : T → ∂T is a quasi-retraction. Let Aj = f−1(Ij) for j = 1, 2, 3. These are
closed subsets of T and A1 ∪ A2 ∪ A3 = T . Since I1 ∩ I2 ∩ I3 = ∅, we deduce that A1 ∩ A2 ∩ A3 = ∅,
which contradicts (c).

(d)⇒(c): Choose a convenient triangle. Let T = {(x, y, z) ∈ R3 : x, y, z ≥ 0, x + y + z = 1}. This
is the standard 2-simplex spanned by e1, e2, e3. Let Ij = ⟨ek : k ̸= j⟩. If (c) fails, then we can find Aj ,
j = 1, 2, 3 with Ij ⊆ Aj ,

⋃
j Aj = T , and

⋂
j Aj = ∅. Define

f(x) =
(d(x,A1), d(x,A2), d(x,A3)∑

j d(x,Aj)

Note that Aj is closed and bounded for all j, so each d(x,Aj) is finite, and
⋂

j Aj = ∅ ensures that the
denominator is never 0. f is also cts. If x ∈ Ij ⊆ Aj , then d(x,Aj) = 0, then f(x) ∈ Ij , so f(Ij) ⊆ Ij .
Contradiction.

(d)⇒(b): Suppose (b) fails, i.e., we can find a retraction f : D → ∂D. Recall the homeomorphism
φ : D → T from an earlier part of the proof. Let g = φ ◦ f ◦ φ−1, then g : T → ∂T is continuous. If
x ∈ T , then f(φ−1(x)) ∈ ∂D, then g(x) ∈ ∂T . If x ∈ ∂T , then φ−1(x) ∈ ∂D, then f(φ−1(x)) = φ−1(x),
so g(x) = x. In particular, g is a quasi-retraction.

We prove (c). First, some technical results.

Definition 1.4. For n ≥ 2, we define the nth subdivision of a triangle T (or the nth triangular grid) by
dissecting each edge into n equal subintervals and join them by lines parallel to the sides.

Theorem 1.5 (Discrete version of (c)). Let T be a triangle with edges Ij, j = 1, 2, 3, subdivided into
a triangular grid. Suppose each vertex of the grid has one of 3 colors R1, R2, R3 s.t. ∀ vertex in Ij is
either Rj or Rj−1 (index mod 3). Then there exists a triangle in the grid s.t. all vertices have distinct
colors (multicolored).

Proof. Given an edge between two adjacent vertices of the grid and a direction, we assign a value to
that edge: if the two vertices have the same color then 0, if Rj → Rj−1 then 1, if Rj → Rj+1, then −1.
(Observation: if we have a small triangle in the grid, then summing over its edges counterclockwise gives
a non-zero value if and only if all three vertices have distinct colors. In this situation, the value is ±3.)
Now consider the the sum over all small triangles in the grid (each counterclockwise), then each internal
edge appears exactly twice with opposite orientation, so we only pick up values from the boundary of
the large triangle T . (The contribution is 1 from each Ij since we can only have two colors.) The total
is 3, so as we sum over each small triangle, there must exist at least one small triangle with non-zero
contribution, and this happens precisely when it is multicolored.

We now prove (c).

Proof. For each n ≥ 2, consider the nth triangular grid in T . For all vertices x of the grid, if x has color
Rj then x ∈ Aj . Can do this in a way so that all vertices in Ij are Rj or Rj−1. Apply the preceding
theorem for each n. We see that for each n, there exists a triangle with vertices xn, yn, zn which multi-
colored. Find a subsequence xnk

→ x ∈ T by sequential compactness. Then ynk
, znk

→ x. By closedness

of Aj , we see that x ∈
⋂3

j=1 Aj .

Remark 2. Brouwer’s fixed point theorem holds for any compact convex set in D ⊆ Rn.

2 The Degree of a Closed Curve and Winding Number

Recall from CA that we can define arga for z in the cut plane.

Lemma 2.1. arga is cts on its domain.

So if f : [0, 1] → C is a cts function to a cut plane, then we have a continuous choice of argument
defined on f .

Theorem 2.2. Let f : [0, 1] → C∗ be cts. Then there is a cts choice of argument on f , i.e., ∃θ : [0, 1] → R
cts s.t.f(t) = |f(t)|eiθ(t). This choice is unique up to adding 2nπ, n ∈ Z.
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Proof. By uniform continuity, partition [0, 1] into a number of segments [ti, ti+1] s.t. |f(tk)−f(tk−1)| < ε,
where ε is s.t. Bε(0) ⊆ C \ im(f).

Induction: suppose there is a cts choice θ on [0, tk]. Note that im(f |[tk,tk+1]) ⊆ Bε(f(tk)). This lies
in a cut plane, so we choose a cts arga s.t. θ(tk) = arga(tk), so the argument function is extendable.

For uniqueness, if ϕ(t) is another choice, then θ(t)− ϕ(t) is a cts function to 2nZ.

Definition 2.3. f : [0, 1] → C∗ be a closed path. The winding number (degree) of f about 0 is
1
2π (θ(1)− θ(0)) where θ is a choice of argument on f .

Lemma 2.4. f, h : [0, 1] → C∗. two cts closed paths, w(fh, 0) = w(f, 0) + w(h, 0).

Proof. If θ, ϕ are cts arg for f, h respectively, then θ + ϕ is a cts arg of fh.

Corollary 2.5 (‘Dog-walking’ lemma). Let f : [0, 1] → C∗ be a closed path. g : [0, 1] → C another closed
path s.t. |g(t)| < |f(t)| for all t. Then w(f, 0) = w(f + g, 0).

Proof. Write f + g = f(1 + g/f). Let h = 1 + g/f , then imh lies in the right half plane, so h has a cts
arg and w(h, 0) = 0. Done by the lemma.

Define homotopy between two paths.

Lemma 2.6. Let f1, f2 : [0, 1] → C∗ be closed paths. If f1 ≃F f2, where F : [0, 1]2 → C∗, then
w(f1, 0) = w(f2, 0).

Proof. Note that imF is closed in C, so can find ε > 0 s.t. |F (s, t)| > ε for all s, t. By unif continuity,
find δ > 0 s.t. d((s, t), (s′, t′)) < δ ⇒ |F (s, t)− F (s′, t′)| < ε. Choose a dissection {0 = s0 < s1 < . . . <
sn = 1} s.t. sk+1 − sk < δ. Then for all k and t, we have

F (sk, t) = F (sk+1, t) + hk(t)

where |h(t)| < ε. Since |F (sk+1, t)| > ε, we are in the situation of the previous lemma. Done.

Corollary 2.7 (Topological argument principle). Let D be the closed unit disk in C and f : D → C cts
s.t. f(z) ̸= 0 whenever |z| = 1. Let g : [0, 1] → C with g(t) = f(ei2πt). If w(g, 0) ̸= 0, then f has a root
in D.

Proof. Suppose f is never zero in D. We define F (s, t) = f(sei2πt) for s, t ∈ [0, 1]2, i.e., g is null-
homotopic, so has winding number zero.

Corollary 2.8. No retraction D → ∂D.

Proof. If such a retraction exists, then define g(t) as in the previous corollary. Then w(g, 0) = 1, so there
exists z s.t. f(z) = 0. Contradiction.

Corollary 2.9 (FTA). Every non-constant complex poly has a root in C.

Proof. Let p(z) = anz
n+ . . .+a0, an ̸= 0. Choose r > 1 s.t. |anr| > |an−1|+ . . .+ |a0|. Then for |z| = r,

have

|anzn| > (|an−1|+ . . .+ |a0|)rn−1

≥ |an−1z
n−1|+ . . .+ |a0|

≥ |an−1z
n−1 + . . .+ a0|

Let f : D → C, z 7→ p(rz), so f(z) = g(z) + h(z) where g(z) = an(rz)
n. We have |g(z)| > |h(z)|

when |z| = 1. Consider the paths u = f(ei2πt), v = g(ei2πt), a = h(ei2πt). Have |a(t)| < |v(t)|. Apply
dog-walking lemma, get w(u, 0) = w(v, 0) = n. [Write an = qeiα, define θ(t) = 2πnt + α is a cts choice
of argument]. So there exists z0 s.t. f(z0) = 0, so p(rz0) = 0.
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3 Polynomial Approximation

Proposition 3.1 (Chebyshev Inequality). Let X be a square integrable r.v. with EX = µ and var(X) =
σ2, then

P(|X − µ| ≥ cσ) ≤ 1

c2

Proof. σ2 = E[(X − µ)2] ≥ (cσ2)E[1|X−µ|≥cσ]

Corollary 3.2. Let X1, ..., Xn be i.i.d Bernoulli variables with parameter t ∈ [0, 1]. Let Yn(t) =
1
n

∑n
i=1 Xi. Then

∀δ > 0, P(|Yn(t)− t| ≥ δ) ≤ 1

δ2n

Proof. Observe that σ2 = var(Yn) ≤ 1/n. Apply Chebyshev with c = δ
√
n.

P(|Yn − t| ≥ δ) ≤ P(|Yn − t| ≥ (σ
√
n)δ) ≤ 1

δ2n

Note that σ < 1/
√
n, so the first inequality makes sense.

Theorem 3.3 (Weierstrass approximation theorem). Let f : [0, 1] → R be cts. For all ε > 0, there exists
a poly p s.t. ∥p− f∥∞ < ε.

Proof. For each n = 1, 2, 3, ..., let Y = Yn(t) be the r.v. defined in the previous corollary.
Step 1: We show that E[f(Yn(t))] is a polynomial in t. Compute

E[f(Yn(t))] =

n∑
k=0

f(k/n)P(Yn(t) = k/n) =

n∑
k=0

f(k/n)

(
n

k

)
tk(1− t)n−k

Step 2: We show that for all ε > 0, there exists a sufficiently large n s.t. |E[f(Yn(t))]− f(t)| < ε for
all t ∈ [0, 1]. We know that ∃M > 0 s.t. |f(t)| < M for all t. Let ε > 0. Uniform continuity implies that
|f(s)− f(t)| ≤ ε/2 whenever |s− t| ≤ δ. Now

P(|f(Yn(t))− f(t)| ≥ ε) ≤ P(|Yn − t| ≥ δ) ≤ 1

δ2n

Choose n s.t. 1
δ2n < ε

4M so that

|E(f(Yn(t))− f(t))| ≤ E|f(Yn(t))− f(t)|
= E(|f(Yn(t))− f(t)|1|f(Yn(t))−f(t)|<ε/2) + E(|f(Yn(t))− f(t)|1|f(Yn(t))−f(t)|≥ε/2)

≤ ε

2
+ 2M

ε

4M
= ε

and we are done.

Corollary 3.4. Let f : [0, 1] → R cts. Then there exists a seuquence of polys (pk)k∈N s.t. pk → f unif.
on [0, 1] as k → ∞.

Theorem 3.5 (Chebyshev equal ripple criterion). Let f : [0, 1] → R be cts and p a polynomial of degree
p < n. Suppose there exists a ≤ a0 < a1 < · · · < an ≤ b s.t. ∥f − p∥∞ such that exactly one of the
following holds

(1) f(ak)− p(ak) = (−1)k∥f − p∥∞ for all k = 0, ..., n

(2) f(ak)− p(ak) = (−1)k+1∥f − p∥∞ for all k = 0, ..., n.

Then, we have ∥f − p∥∞ ≤ ∥q − f∥∞ for all polynomials q with deg q < n. (i.e. p is hte best poly
approximation of f of degree less than n)

Proof. Suppose p has property (1) and q is a poly of deg < n with ∥q − f∥∞ < ∥p− f∥∞. Then

• for k even, we have f(ak) − p(ak) = ∥f − p∥∞ and f(ak) − q(ak) < r and f(ak) − q(ak) < r, so
q(ak) > p(ak)

• for k odd, similar argument shows that q(ak) < p(ak).
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By IVT, we can find a root of p(t) − q(t) between (ak, ak+1), so p(t) − q(t) has n roots. But this has
degree < n, so p ≡ q.

In fact the equal ripple condition is also necessary.
We try to find a poly of deg < n which best approximates tn.

Lemma 3.6. cos(nθ) is a poly of deg n in cos θ with leading coeff 2n−1.

Proof. Expand (cos θ + i sin θ)n.

Definition 3.7. The nth Chebyshev polynomial Tn(x) is defined by Tn(cos θ) = cos(nθ).

Observe that |Tn(t)| ≤ 1 for t ∈ [−1, 1] with roots t = cos (2l−1)π
2n for l = 1, ..., n. It reaches extremum

at cos(kπ/n). If ak = cos(kπ/n), then 1 = a0 > · · · > an = −1 and Tn(ak) = (−1)k.
We can write Tn(t) = 2n−1(tn−Sn(t)) for some poly Sn, so Sn(t) = tn−21−nTn(t). Since |tn−Sn(t)| ≤

21−n and ank − Sn(ak) = 21−nTn(ak) = (−1)k21−n. Therefore by Chebyshev criterion, we get

Proposition 3.8. Sn(t) is the best poly approximation (deg < n) of tn on [−1, 1]. For any polynomial
Q(t) of degree < n, we have ∥tn −Q(t)∥∞ ≥ 21−n.

Corollary 3.9.

(i) If p : [−1, 1] → R defined by
∑n

j=0 ajt
j with |an| ≥ 1, then ∥p∥∞ ≥ 2−n+1.

(ii) ∀n ∈ N, ∃ε = ε(n) > 0 s.t. if p(t) =
∑n

j=1 akt
j (so deg ≤ n) and |ak| ≥ 1 for some n ≥ k ≥ 0,

then ∥p∥∞ ≥ ε.

Proof. (i): Consider

∥p∥∞ = |an| sup
t∈[−1,1]

∣∣∣∣∣∣tn +

n−1∑
j=0

an
|an|

tn

∣∣∣∣∣∣ ≥ 21−n

(ii) Proceed by induction. If n = 0, then pick ε = 1. Suppose the result holds for all poly of deg ≤ n.
Consider p(t) = an+1t

n+1 +
∑n

j=0 ajt
j = an+1t

n+1 +Q(t).

• If |an+1| < ε(n)/2, then ∥p∥∞ ≥ ∥Q∥∞ − |an+1| ≥ ε(n)/2.

• If |an+1| ≥ ε(n)/2, then ∥p∥ ≥ ∥tn + 1
an+1

Q(t)∥∞ ≥ |an+1|2−n ≥ ε(n)2−1−n, so we set ε(n+ 1) =

ε(n)2−1−n.

Theorem 3.10. Let f : [−1, 1] → R be a cts function. For all n ∈ N, there exists a poly p of deg ≤ n
s.t. ∥p− f∥∞ ≤ ∥q − f∥∞ for all polys q of deg ≤ n.

Proof. Let q(t) =
∑n

j=0 bjt
j .

• Suppose ∃j s.t. bj ≥ 2∥f∥∞+1
ε(n) . Then ∥q∥∞ ≥ ε(n) 2∥f∥∞+1

ε(n) = 2∥f∥∞ + 1 by (ii) of the previous

corollary. In this case, ∥q−f∥∞ ≥ 2∥f∥∞+1−∥f∥∞ > ∥f∥∞. Certainly not the best poly approx.

• Otherwise, let

E = {q(t) =
n∑

j=0

bjt
n : ∀j, |bj | <

2∥f∥∞ + 1

ε(n)
}

Define κ = infq∈E ∥q − f∥∞. Then there exists qm ∈ E s.t. ∥qm − f∥∞ → κ as m → ∞. Write
qm(t) =

∑n
j=0 bj(m)tj . Note that the coefficients (regarded as a vector) is a bounded sequence in

Rn+1, so admits a convergent subsequence by B-W. Let p∗ denote the limit. Have ∥qmk
−p∗∥ → 0.

Can check that p∗ is the best approximation.
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4 Gaussian Integration

Recall inner products and L2 norm on C[−1, 1].

Lemma 4.1. There exists a sequence of polynomials (pn)n∈N ∈ C[−1, 1] with deg pn = n and ⟨pm, pn⟩ =
δnm. Moreover, pn is unique up to scalar multiple.

Can fix ∥pn∥2 = 1 and require the leading coefficient is > 0.

Proof. Start with {ti : i ∈ N}. Apply Gram-Schmidt.

Corollary 4.2. If f is a poly of degree < n, then
∫ 1

−1
fpn = 0.

Lemma 4.3. pn has distinct roots, all in [−1, 1].

Proof. Suppose x1, ..., xk are all the distinct root of pn having odd multiplicity. Consider q(t) = (t −
x1)(t − xk), k ≤ n. Then q changes sign precisely when pn changes sign, so qpn doesn’t change sign.
Since qpn is non-zero, we have ⟨q, pn⟩ ≠ 0, so k = n (forced by the preceding corollary).

Definition 4.4. pn discussed above is called the nth Legendre polynomial.

Theorem 4.5.

(i) Let α1, ..., αn be the roots of nth Legendre polynomial pn and A1, ..., An chosen so that
∫ 1

−1
P (t)dt =∑n

j=1 AjP (αj) whenever deg p < n. Then,
∫ 1

−1
Q(t)dt =

∑n
j=1 AjQ(αj) whenever Q is a poly of

degree < 2n.

(ii) If βj , Bj are alternative choices s.t. (i) holds, then {βj} = {αj} are the roots of Legendre polyno-
mial.

Proof. (i): If degQ < 2n, then Q = qpn + r for some poly r s.t. deg r < n. Note that deg q < n so that∫ 1

−1
Q(t)dt =

∫ 1

−1
r(t)dt =

∑
j Ajr(αj) =

∑
j Aj(q(αj)pn(αj) + r(αj)) =

∑
j AjQ(αj).

(ii): Suppose we have another set of choices. So
∫ 1

−1
Q(t)dt =

∑
j BjQ(βj) whenever degQ < 2n.

Consider p(t) =
∏

j(t − βj). Consider ⟨p, q⟩ for deg q < n. Note that deg pq < 2n, so
∫ 1

−1
pq =∑

j Bjp(βj)q(βj) = 0. By the uniqueness of the construction of pn, βj are roots of pn.

Lemma 4.6. Let α1, ..., αn be the roots of the nth Legendre poly and A1, ..., An numbers defined as in
the previous theorem. Then

(i)
∑

i Ai = 2

(ii) Ai ≥ 0 for all i = 1, ..., n

Proof. (i): Apply the first part of the preceding theorem to Q(t) = 1.
(ii): Define Qi(t) =

∏
j ̸=i(t− αj)

2

Theorem 4.7. For n ≥ 1, let α1, ..., αn be the roots of the nth Legendre poly and A1, ..., An as in the
preceding theorem. Let f : [−1, 1] → R be a continuous function and ε > 0. Then for all sufficiently large
n ∣∣∣∣∣

∫ 1

−1

f(t)dt−
n∑

i=1

Aif(αi)

∣∣∣∣∣ < ε

Proof. By Weierstrass approximation theorem, there exists a polynomial p s.t. supt∈[−1,1] |f(t)− p(t)| <
ε/4. For all n > 1

2 deg p, have∣∣∣∣∣
∫ 1

−1

f(t)dt−
n∑

i=1

Aif(αi)

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

−1

(f(t)− p(t))dt

∣∣∣∣+
∣∣∣∣∣∑

i

Ai(p(αi)− f(αi))

∣∣∣∣∣
The first term is ≤ ε/2. The second term is ≤ ε/2 by the preceding lemma.

Remark 3. Can further show that

(i) Legendre poly pn = c dn

dtn (1− t2)n (cf. ES2 Q11)

(ii) Chebyshev polys can be presented as an orthogonal seuqnece by integrating w.r.t. a weight function.
(cf. ES2 Q13)
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5 Approximation by Complex Polynomials

When S ⊆ C is any set, a function being holo’c on S means that it is holo’c on some open set containing
S.

Theorem 5.1 (Runge). Let K ⊆ C be compact and f a holo’c function on K. Suppose C \ K is
path-connected. Then ∀ε > 0 ∃ a poly p(z) s.t. supz∈K |f(z)− p(z)| ≤ ε

We write u.a.p. for ”unif. approximable by polys”.

Lemma 5.2. If f, g are u.a.p. on K, then f + g, fg, λf , λ ∈ C are also u.a.p. Furthermore, if fn is a
sequence of functions u.a.p. in K and fn → f unif. then f is u.a.p. in K.

Proof. Note that ∥(λf + µg) − (λp + µq)∥∞ ≤ λ∥f − p∥∞ + µ∥g − q∥∞ and ∥fg − pq∥∞ = ∥fg − pg +
pg − pq∥∞ ≤ ∥g∥∞∥f − p∥∞ + ∥p∥∞∥g − q∥∞.

For the second part, note ∥f − p∥∞ = ∥f − fn + fn − p∥∞ ≤ ∥f − fn∥∞ + ∥fn − p∥∞.

Lemma 5.3. Let U ⊆ C open, K ⊆ U compact, f : U → C holo’c. Then there exists a ‘finite set of ’
piecewise linear contours Cm, m = 1, ...,M , lying in U \K s.t.

f(z) =
1

2πi

M∑
i=1

∫
Cm

f(w)

w − z
dw

for all z ∈ K.

Proof. C \ U is closed and (C \ U) ∩K = ∅, then there exists δ > 0 s.t. |z − w| ≥ δ for all z ∈ K and
all w ̸∈ U . Cover C with grid of closed solid squares with length δ/10. The number of such squares
is finite, so we have a finite list s1, ..., sJ (all squares that meet K). Let ∂sj denote the boundary
of sj oriented counterclockwise. If z ∈ K and z ̸∈ ∂sj for all j, then there exists a unique sj s.t.
f(z) = 1

2πi

∫
∂sj

f(w)/(w − z)dw by CIF. Note that the integrals over other squares are 0. The integral

over all internal edges cancel due to consistent orientation. Let El be an edge of sj then
⋃

El is a finite
set of closed contours we want.

Proof of Runge’s theorem. Step 1: Prove that f is u.a. by rational functions p(z)/q(z) s.t. poles are
outside of K. First suppose K is connected. We expect a nice contour γ : [0, 1] → U \K s.t. w(γ, z) = 1

for all z ∈ K (preceding lemma). Then can write Iz = f(z) = (2πi)−1
∫
γ

f(w)
w−z dw for all z ∈ K. Note

that

f(z) =
1

2πi

∫ 1

0

f(γ(t))γ′(t)

γ(t)− z
dt

For each l choose a linear parametrization γl : I → E s.t. γ′ = const, e.g. δ/10. Consider the function

Fl(z, t) =
f(γl(t))γ

′
l(t)

γl(t)−z is unif. cts on K × [0, 1] as γ(t) /∈ El and El ∩K = ∅. Hence,

sup
|x−y|<1/N

|Fl(z, x)− Fl(z, y)| → 0

uniformly in z ∈ K.
Then ∣∣∣∣∣

∫ 1

0

Fl(z, t)dt−
1

N

n∑
n=1

Fl(z, n/N)

∣∣∣∣∣ → 0

uniformly in z ∈ K. Summing over El, get∣∣∣∣∣
∫
⋃

El

Fl(z, t)dt− rN

∣∣∣∣∣ → 0

where rN is a rational function.
Step 2: Prove that rational functions of the form 1/(α− z) is u.a.p. in K. Define S = {α ∈ C \K :

1
α−z u.a.p.}

• S ̸= ∅. To see this, note that K is closed and bounded. Pick an α with sufficiently large modulus,
then we have a Taylor expansion which is loc. unif. convergent on a large open disk containing K.
Can take partial sums to get poly approximation.
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• S is open. Let α ∈ S. Have

1

β − z
=

1

(α− z)(1− α−β
α−z )

=
1

α− z

∞∑
j=0

(
α− β

α− z

)j

when |α − β| < |α − z|. By compactness, let d = infz∈K |α − z|. Then such an expansion works
when β ∈ Bd(α), so Bd(α) ⊆ S.

• Now claim that S = C \K. Suppose β ̸∈ K, choose α ∈ S ⊆ C \K. By path-connectedness, there
exists φ : [0, 1] → C \K with φ(0) = α, φ(1) = β By compactness of various things, we can find
δ > 0 s.t. |z − φ(t)| ≥ δ for all z ∈ K and t ∈ [0, 1]. Choose a partition 0 = t0 < t1 < · · · < tm = 1
s.t. |φ(ti+1) − φ(ti)| < δ for all i (possible by uniform continuity). Then by the argument in the
second bullet point, β ∈ S.

Remark 4. A stronger approximation result is given by S.N. Mergelyan: if K ⊆ C is compact and C \K
connected and f : K → C cts s.t. f |int(K) is holo’c, then f is u.a.p. on K. When C \K is not connected,
u.a.p. in general is not possible but can approximate by rational functions.

Remark 5. If we only require pointwise convergence, then can e.g. show that f(reiθ) = r3/2e3iθ/2 can
be pointwise approximated by polys on the closed unit disk. Let Kn = {z = reiθ : 1/n ≤ r ≤ 1, 2π/n ≤
θ ≤ 2π + π/n}. Runge’s thm applies to each Kn after a suitable branch of square root is chosen.

6 Irrationality, Transcendence, and Continued Fractions

Proposition 6.1. π is irrational.

Proof. Consider Sn(x) = 1
2nn!

∫ x

0
(x2 − t2)n cos(t)dt IBP twice, obtain a recursive relation: Sn(x) =

(2n−1)Sn−1(x)−x2Sn−2(x) for n ≥ 2. Have S0(x) = sin(x) and S1(x) = −x cosx+sinx. By induction,
can write Sn(x) = qn(x) sinx + pn(x) cosx for some polys pn, qn, which satisfies the same recursive
relation pn = (2n− 1)pn−1 = x2pn−2, qn = (2n− 1)qn−1 +x2qn−2, with initial condition p0 = 0, p1 = x,
q0 = q1 = 1. Induction also shows that deg pn, deg qn ≤ n and with integer coeff. Evaluate at π/2,
see that qn(π/2) = Sn(π/2) > 0. Suppose π ∈ Q, then write π/2 = r/s for r, s ∈ N coprime. Then

qn(π/2) =
∑n

j=0 aj(r/s)
d ≥ 1/sn. On the other hand, qn(π/2) ≤ 1

2nn!
π
2 (

π
2 )

2n, so 1 ≤ 1
n! (

sπ2

8 )n → 0 as
n → ∞. Contradiction.

Recall the defn of algebraic number and the defn of transcendental numbers.

Theorem 6.2 (Liouville). Let α be an irrational root of the equation anx
n + · · ·+ a0 = 0, where an ̸= 0

and aj ∈ Z for all j. Then there exists a constant c s.t. |α− p/q| ≥ c/qn for all p, q ∈ Z with q ̸= 0.

Proof. Pick R ≥ 1 s.t. all the roots of P lie in [−R + 1, R + 1]. If we take 0 < c ≤ 1, then the result
holds outside of [−R,R].

By compactness of [−R,R], we find a bound M > 1 s.t. |P ′| ≤ M on [−R,R]. If α is an irrational
root and p, q ∈ Z with q ̸= 0 and P (p/q) ̸= 0, then MVT says

|P (α)− P (p/q)| ≤ M
∣∣∣α− p

q

∣∣∣
i.e.,

|P (p/q)| ≤ M
∣∣∣α− p

q

∣∣∣
Note that qnP (p/q) ∈ Z is a non-zero integer, so |qnP (p/q)| ≥ 1, so we have

M−1q−n ≤
∣∣∣α− p

q

∣∣∣
Since there are only finitely many roots, we know that there is a c′ > 0 s.t. |α− p

q | ≥ c′q−n for all such
α and valid p, q.

We are now done by taking c = min{M−1, c′, 1}.
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Corollary 6.3. The number
∑∞

n=0
1

10n! is transcendental.

Corollary 6.4. For all irrational α > 0, we can find un, vn ∈ N s.t. vn → ∞ and |α− un/vn| < 1/v2n.

It is useful to observe if a, b, ã, b̃ ∈ N are s.t. gcd(a, b) = 1, gcd(ã, b̃) = 1, then |a/b− ã/b̃| ≥ 1
bb̃
.

Theorem 6.5. Let α > 0 be irrational and pn

qn
convergents of α. Suppose k is odd. Then for all p/q ∈ Q

with p/q ∈ (pk−1/qk−1, pk/qk) have q > qk.

A similar statement holds when k is even.

Proof. Suppose p, q coprime. If q ≤ qk, then (exactly) one of the following holds. If α < p/q < pk/qk,
then |pk/qk − p/q| ≥ 1

qkq
≥ 1

qkqk+1
≥ |α − pk/qk|. Contradiction. If pk−1/qk−1 < p/q < α, then

|pk−1/qk−1 − p/q| ≥ 1
qqk−1

≥ 1
qk−1qk

≥ |α− pk/qk|. Contradiction

Lemma 6.6. For all n, |α− pn−1/qn−1| > |α− pn/qn|.

Proof. α is between pk−1/qk−1 and pn/qn, so suffices to prove |pn−1/qn−1− pn/qn| > 2|α− pn/qn|. Note
that LHS≥ 1

qnqn−1
and RHS≤ 2

qnqn+1
. Note that qn+1 = an+1qn + qn−1 ≥ qn + qn+1 ≥ 2qn−1, and we

are done.

Theorem 6.7. Suppose α is irrational, pn/qn a convergent. Then |pn/qn−α| ≤ |p/q−α| for all p, q ∈ Z
with 0 < q < qn.

Proof. Preceding lemma and thm

Theorem 6.8. Let α > 0 be irrational. If p, q coprime and |α− p/q| ≤ 1
2q2 , then p/q = pk/qk for some

k

Proof. qk is strictly increasing with k, so there exists a unique k with qk ≤ q < qk+1. Suppose pk/qk <
α < pk+1/qk+1 (wlog, since the other case is very similar).

If p/q < pk/qk, then |α − p/q| > |pk − p/q| ≥ 1
qkq

≥ 1
q2 . Contradiction. If pk/qk = p/q, then we

are done. If pk/qk < p/q, then |p/q − pk/qk| ≥ 1
qqk

> 1
qkqk+1

> |α − pk/qk|, so pk/qk < α < p/q.

Further, can’t have p/q ≤ pk+1/qk+1, so pk/qk < α < pk+1/qk+1 < p/q. Then either q ≥ qk+1/2 (in
this case |α − p/q| > |pk+1/qk+1 − p/q| ≥ 1

qqk+1
≥ 1

2q2 contradiction) or 0 < q < qk+1/2 (in this case

|α − p/q| = |p/q − pk/qk| − |pk/qk − α| ≥ 1
qqk

− 1
qkqk+1

= 1
qk
( 1q − 1

qk+1
) > 1

2q2 Contradiction). Hence,

pk/qk = p/q.

Observe that “larger an” =⇒ “larger qn” =⇒ better approximation of α.
Consider a slight generalization of continued fraction Let

Rn(x) =
x

1− x2

3− x2

5−x2/···

Proposition 6.9. Rn(x) → tan(x) as n → ∞ whenever |x| ≤ 1.

More generally, can consider

a0 +
b0

a1 +
b1

a2+
b2

...

for sequences (aj), (bj), bj ∈ R, aj ∈ Z and a0 ≥ 0, aj > 0 for j > 0.
Have

pn
qn

= a0 +
b0

a1 +
b1

a2+
b2

···
bn−1
an

and
rk
sk

= ak +
bk

ak+1 +
bk+1

··· bn−1
an

9



Then have rk/sk = ak + bk
rk+1/sk+1

In terms of matrices

(
rk sk

)
=

(
rk+1 sk+1

)(ak 1
bk 0

)
So (

pn qn
)
=

(
r0 s0

)
=

(
an 1

)(an−1 1
bn−1 0

)
· · ·

(
a0 1
b0 0

)
and

bn
(
pn−1 qn−1

)
=

(
bn 0

)(an−1 1
bn−1 0

)
· · ·

(
a0 1
b0 0

)
Hence (

pn qn
bnpn−q bnqn−1

)
=

(
an 1
bn 0

)(
pn−1 qn−1

bn−1pn−1 bn−1qn−1

)
so {

pn = anpn−1 + bn−1pn−2

qn = anqn−1 + bn−1qn−2

(†)

Proof. Apply (†) to Rn(x), we have R1(x) = x/2, R2(x) =
3x

3−x2 and recurrence relation{
pn(x) = (2n− 1)pn−1(x)− x2pn−2(x)

qn(x) = (2n− 1)qn−1(x)− x2qn−2(x)

Now

tan(x)− pn(x)

qn(x)
=

qn(x) sin(x)− pn(x) cos(x)

qn(x) cos(x)
=

sn(x)

qn(x) cos(x)

Recall from the proof that π is irrational the integral expression sn(x) =
1

2nn!

∫ x

0
(x2 − t2)n cos(t)dt. So

|sn(x)| ≤
1

2nn!
|x|2n+1 → 0

since |x| is bounded.
Need to bound qn from below. Let rn(x) =

qn(x)
qn−1(x)

, then rn(x) = (2n− 1)− x2

rn−1(x)
. If |x| ≤ 1, n ≥ 2

and |rn−1(x)| ≥ 1, then rn(x) ≥ 2n− 1− 1 = 2n− 2 ≥ 2, so qn(x) → ∞ as n → ∞. Since |x| ≤ 1, have
r2(x) = q2(x) = 3− x2 ≥ 2 and q1(x) = 1. Therefore the above is true.

7 Properties of Hausdorff Topological Spaces

Theorem 7.1. Let (X, τ) be cpt hausdorff. Then there is no strictly finer topology on X making it
compact and there is no strictly coarser topology on X making it Hausdorff

Proof. Topological inverse function theorem applied to the identity of X changing topology.

Definition 7.2. A top. space X is regular if for given x ∈ X and a closed subset F ⊆ X not containing
x, there exists disjoint open U, V ⊆ X s.t. x ∈ U , F ⊆ V , U ∩ V = ∅

Definition 7.3. A top. space X is normal if for all F,G ⊆ X disjoint closed subsets, there exists U, V
disjoint open s.t. F ⊆ U , G ⊆ V .

Definition 7.4. A top. space X is T1 if for all x, y ∈ X distinct, there exists an open set U ⊆ X s.t.
x /∈ U and y ∈ U .

If X is T1, then normal implies regular implies Hausdorff. Recall from IB Anatop that any compact
Hausdorff space is normal and regular.
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8 Baire Category Theorem

Definition 8.1. X a top. space, Y ⊆ X.

(1) Y is dense if Y ∩ U ̸= ∅ for all U non-empty open subset of X.

(2) If V ⊆ X is open, then Y is said to be dense in V if Y ∩U ̸= ∅ for all U ⊆ V is open and non-empty.

(3) Y is nowhere dense if for all open non-empty V ⊆ X, there exists open U ⊆ V s.t. U ∩ Y = ∅, i.e.,
Y is not dense in any open subset of X.

The Cantor set C is nowhere dense. For any y1 < y2, we can find p and n s.t. (p−1
3n , p+1

3n ) ⊆ (y1, y2),

then either (p−1
3n , p

3n ) ∩X = ∅ or ( p
3n ,

p+1
3n ) ∩X = ∅.

Theorem 8.2 (Baire (open set version)). Suppose X is a non-empty complete metric space. Suppose
(Ui)i∈N is a sequence of open dense subsets of X. Then

⋂∞
n=1 Ui = ∅.

Proof. Pick x1 ∈ U1 and a closed ball B1 = Bε1(x1) ⊆ U with ε1 ≤ 1. Pick x2 ∈ Bε1(x) ∩ U2 and
consider B2 = Bε2(x2) ⊆ Bε1(x1) ∩ U2 with ε2 ≤ 1/2. Inductively, given xn−1 and Bn−1, can choose xn

and Bn s.t. Bn ⊆ Bεn−1
(x) ∩ Un. Thus have a a nested sequence of closed balls B1 ⊇ B2 ⊇ · · · . Note

that (xn)n∈N is Cauchy, so converges by completeness. Also, for all k, n > k =⇒ xn ∈ Bk (closed), so
x ∈ Bn for all n, so x ∈

⋂
n∈N Un.

Lemma 8.3. X top. space. Y ⊆ X. If Y is nowhere dense, then so is Ȳ .

Proof. Given U ⊆ X open and non-empty, find V ⊆ U open s.t. V ∩Y = ∅, so Y ⊆ X \V , so Ȳ ⊆ X \V
by property of closure, so Ȳ ∩ V = ∅.

Lemma 8.4. X top. space, U ⊆ X. U is open dense iff X \ U is closed and nowhere dense.

Proof. If U is open dense, then X \ U is certainly closed. If W is non-empty open, then U ∩ W ̸= ∅,
then U ∩W ∩ Y = ∅.

Conversely, if X \ U is closed and nowhere dense, then U is certainly open. Given W open and
non-empty, there exists V ⊆ W open s.t. V ∩X \ U = ∅, then V ⊆ U , so W ∩ U ̸= ∅.

——-

Corollary 8.5. fn ∈ C[0, 1]. If fn → f pointwise on [0, 1], then there exists a subinterval (a, b) on which
f is bounded.

Remark 6. With some work, can show that the set of discontinuities must be meager. (e.g., Thomae’s
function is cts on irrational nums but discts on rational nums)

Let rn be an enumeration of Q ∩ (0, 1), and let fn be the unique piecewise linear function s.t.
fn(rk) = f(rk) for all k ≤ n and fn(0) = fn(1) = 0 and fn is diff at each x ̸= rk

Theorem 8.6. There exists a cts f : [0, 1] → R which is nowhere diff at any x ∈ (0, 1).

We shall prove that in C[0, 1], the set {f ∈ C[0, 1] : f ′(x) exists at some x ∈ (0, 1)} is meager.

Proof. Define An = {f ∈ C[0, 1] : ∃x ∈ (0, 1), ∀y ∈ ([x− 1/n, x)∪ (x, x+ 1/n])∩ [0, 1], | f(x)−f(y)
x−y | ≤ n}.

(Lemma) An is closed for all n. Fix n, let (fj) be a sequence in An which converges uniformly

in C[0, 1]. We get a sequence (xk) s.t. | f(xk)−f(y)
xk−y | ≤ n for all y in proper range. By passing to a

subsequence if necessary, may assume that xk → x ∈ [0, 1]. By uniform convergence, fk(xk) → f(x), so

we can show that for 0 < |x− y| < 1/n, | f(x)−f(y)
x−y | ≤ n. By continuity it holds when |x− y| = 1/n.

(Lemma) An has empty interior. Given f ∈ C[0, 1] and ε > 0, by uniform continuity, find δ > 0 s.t.
|f(x)−f(y)| < ε whenever |x−y| < δ for all x, y ∈ [0, 1]. Choose a dissection 0 = a0 < a1 < ... < aN = 1
with |ai − ai−1| < δ. Define a piecewise linear function p ∈ C[0, 1] s.t. p(ai) = f(ai) and linear between
those pts. Then ∥p − f∥∞ ≤ ε. If B2ε(f) ⊂ An, then Bε(p) ⊆ An, so we reduce to piecewise linear
functions f = p. Assume this, f ′ is piecewise constant, so take only finitely many values. There exists M
s.t. |f ′(x)| < M for all but finitely many x. Take M ′ > 0 (to be specified later) define g s.t. for j ∈ Z,
0 ≤ j ≤ M ′ g(j/M ′) = (−1)j Then ∥f + 1

2εg − f∥ < ε But the slope around x ∈ [0, 1] is ≥ |εM ′ −M |
Choose M ′ large enough, e.g. (M + n + 1)/ε so that M ′ε − M = n + 1. Then f + 1

2εg ∈ Bε(f) but
f + 1

2εg /∈ An.
Done by Baire.
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Proposition 8.7. Assume fn ∈ C[0, 1] and f(x) = lim fn(x) exists for all x. Then C = {x ∈ [0, 1] :
f cts at x} is dense in (0, 1).

Proof. For N, k ∈ N, define FN,k =
⋂

m,n≥N{x ∈ [0, 1] : |fn(x) − fm(x)| ≤ 1/k}. FN,k is closed by

continuity. For all k ∈ N we have
⋃∞

N=1 FN,k = [0, 1] as fn is pointwise Cauchy. Let Uk =
⋃

N≥1 F
◦
N,k.

Given (a, b) ⊆ [0, 1],
⋃

N≥1(FN,k ∩ [a, b]) = [a, b], so Baire implies FN,k ∩ [a, b] contains (α, β) for some
α < β and some k, so (α, β) ⊆ Uk ∩ (a, b)
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