Topics in Analysis

Kevin

January 2025

Review of Metric Spaces

Notation: open ball of radius ¢ will be denoted Bj(x).
Revised some results about metric spaces.

1 Brouwer’s Fixed Point Theorem

A proof of IVT using a compactness argument:

Lemma 1.1 (Discrete IVT). Let f : {0,1,..,n} — R with f(0) < 0 and f(n) > 0, then Im s.t.

Proof. Can prove it using WOP.

Alternatively (an idea which will be useful later), define g : {0,...,n} — R by g(m) =11if f(m) >0
and 0 if f(m) < 0. Then g(n) — g(0) =, (9(m) — g(m — 1)), so there exists g(m) — g(m — 1) > 0, and
we are done. O

Now can prove IVT. F : [a,b] = R, F(a) < 0, F(b) > 0, consider f, : {0,...,n} — R defined by
fn(m) = F(a+ 2(b—a)). Apply lemma, get a sequence x,, s.t. F(z,) >0 and F(x, — (b —a)/n) <O0.
Apply Bolzano-Weierstrass.

Theorem 1.2 (Brouwer’s fixed point theorem in one dimension). If f : [a,b] — [a,b] cts, then f has a
fized point.

This is a trivial consequence of IVT.

Remark 1. In fact, Brouwer’s fixed point theorem in one dimension is equivalent to IVT.

We will generalize this result.
Theorem 1.3. TFAE,
(a) Any continuous self maps of D* has a fized point. (2D Brouwer’s fized point theorem,)
(b) There is no retraction D*> — dD?. (No retraction theorem)

(c) Let T be a (closed solid) triangle with sides I1,I,I3. Let A1, Aa, A3 be closed subsets of T s.t.
Ij QA] andAluAQUAg,:T. Then AlmAzmAg#@.

(d) There is no continuous function f : T — 0T s.t. Vo € I;, f(z) € I;. (No quasi-retraction theorem)

Proof. (a)=(b): Suppose (b) fails and f : D — 0D is a retraction. Let o # id be a non-trivial rotation
about (0,0). Then oo f: D — D is continuous and has no fixed points. Contradiction.

(b)=(a): standard proof of Brouwer’s fixed point theorem from no retraction theorem. Construct a
retraction by mapping x € D to the intersection of the ray from f(z) to z with 9D.

(a)=-(d): Suppose (d) fails. Take T to be an equilateral triangle with vertices 1,w,w? € C (cube
roots of unity). For each polar angle 6, define p(0) = d(0, z), where x is the point on 9T with argument
0. pisctsin @ and 1/2 < p(f) < 1 for all . Define p : D — T, ¢(2) = p(0)z if z € p(f)e? This is a
homeomorphism. ¢(0D) = dT. Now let g : D — D, g = ¢~ o fo. Then p~!(I;) is a 27/3 radian
arc of dD. If x € ¢~ !(I;) and p(z) € I, then f(p(z)) € I;, so g(z) =€ p~*(I;). Also z € D, have
o(x) €T = f(e(x)) € 0T = g(x) € ID. Let m be the antipodal map, then 7 o g has no fixed points.
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(c)=>(d): Suppose f : T — OT is a quasi-retraction. Let A; = f~1(I;) for j = 1,2,3. These are
closed subsets of T and A; U Ay U A3 = T. Since I1 NI, N I3 = &, we deduce that A; N A; N A3 = &,
which contradicts (c).

(d)=(c): Choose a convenient triangle. Let T = {(z,y,2) € R® : 2,y,2 > 0, x +y + 2z = 1}. This
is the standard 2-simplex spanned by ei,es,e3. Let I; = (e : k # j). If (c) fails, then we can find A;,
j=1,2,3 with I; C A;, Uj A; =T, and ﬂj A; = @. Define

(d(l‘, Al), d(.’L’, Ag), d(l‘, Ag,)
> d(x, Aj)

Note that A, is closed and bounded for all j, so each d(x, A;) is finite, and ﬂj A; = @ ensures that the
denominator is never 0. f is also cts. If x € I; C A;, then d(z, A;) =0, then f(z) € I;, so f(I;) C I;.
Contradiction.

(d)=(b): Suppose (b) fails, i.e., we can find a retraction f : D — dD. Recall the homeomorphism
@ : D — T from an earlier part of the proof. Let g = ¢ o fo ™!, then g : T — 9T is continuous. If
x €T, then f(p~1(x)) € OD, then g(z) € OT. If z € 9T, then o~ (z) € D, then f(p~1(x)) = p~1(x),
so g(x) = z. In particular, g is a quasi-retraction. O

fz) =

We prove (c). First, some technical results.

Definition 1.4. For n > 2, we define the nth subdivision of a triangle T' (or the nth triangular grid) by
dissecting each edge into n equal subintervals and join them by lines parallel to the sides.

Theorem 1.5 (Discrete version of (c)). Let T be a triangle with edges I, j = 1,2,3, subdivided into
a triangular grid. Suppose each vertex of the grid has one of 3 colors Ry, Ro, R3 s.t. ¥ vertex in I; is
either R; or Rj_1 (index mod 3). Then there exists a triangle in the grid s.t. all vertices have distinct
colors (multicolored).

Proof. Given an edge between two adjacent vertices of the grid and a direction, we assign a value to
that edge: if the two vertices have the same color then 0, if R; — R;_; then 1, if R; — Rj 1, then —1.
(Observation: if we have a small triangle in the grid, then summing over its edges counterclockwise gives
a non-zero value if and only if all three vertices have distinct colors. In this situation, the value is £3.)
Now consider the the sum over all small triangles in the grid (each counterclockwise), then each internal
edge appears exactly twice with opposite orientation, so we only pick up values from the boundary of
the large triangle T'. (The contribution is 1 from each I; since we can only have two colors.) The total
is 3, so as we sum over each small triangle, there must exist at least one small triangle with non-zero
contribution, and this happens precisely when it is multicolored. O

We now prove (c).

Proof. For each n > 2, consider the nth triangular grid in 7. For all vertices x of the grid, if = has color
R; then z € A;. Can do this in a way so that all vertices in I; are R; or R;_;. Apply the preceding
theorem for each n. We see that for each n, there exists a triangle with vertices ., Yn, 2, which multi-
colored. Find a subsequence z,, — x € T by sequential compactness. Then y,,, , z,, — =. By closedness
of Aj, we see that « € ﬂ?zl A;. O

Remark 2. Brouwer’s fixed point theorem holds for any compact convex set in D C R"™.

2 The Degree of a Closed Curve and Winding Number

Recall from CA that we can define arg, for z in the cut plane.
Lemma 2.1. arg, is cts on its domain.

So if f :]0,1] — C is a cts function to a cut plane, then we have a continuous choice of argument
defined on f.

Theorem 2.2. Let f : [0,1] — C* be cts. Then there is a cts choice of argument on f, i.e., 30 : [0,1] = R
cts s.t.f(t) = |f(t)]eP). This choice is unique up to adding 2nm, n € 7.



Proof. By uniform continuity, partition [0, 1] into a number of segments [¢;, t;41] s.t. | f(tx) — f(tr—1)] < e,
where ¢ is s.t. B:(0) C C\ im(f).
Induction: suppose there is a cts choice 6 on [0,%]. Note that im(f|, ¢,,,]) € B:(f(tx)). This lies
in a cut plane, so we choose a cts arg, s.t. 0(t;) = arg,(tx), so the argument function is extendable.
For uniqueness, if ¢(t) is another choice, then 6(t) — ¢(t) is a cts function to 2nZ. O

Definition 2.3. f : [0,1] — C* be a closed path. The winding number (degree) of f about 0 is
5 (6(1) — 6(0)) where 6 is a choice of argument on f.

Lemma 2.4. f,h:[0,1] = C*. two cts closed paths, w(fh,0) = w(f,0)+ w(h,0).

Proof. If 0, ¢ are cts arg for f, h respectively, then 8 + ¢ is a cts arg of fh. O

Corollary 2.5 (‘Dog-walking’ lemma). Let f : [0,1] — C* be a closed path. g : [0,1] — C another closed
path s.t. |g(t)] < |f(t)| for allt. Then w(f,0) =w(f + g,0).

Proof. Write f+g= f(1+g/f). Let h=1+ g/f, then im h lies in the right half plane, so h has a cts
arg and w(h,0) = 0. Done by the lemma. O

Define homotopy between two paths.

Lemma 2.6. Let fi,fy : [0,1] — C* be closed paths. If fi ~p f2, where F : [0,1]> — C*, then
w(f170) = ’U)(fg,O)

Proof. Note that im F is closed in C, so can find € > 0 s.t. |F(s,t)| > ¢ for all s,¢. By unif continuity,
find § > 0 s.t. d((s,t),(s',t')) <& = |F(s,t) — F(s',t')| < e. Choose a dissection {0 =59 < 81 < ... <
Sp = 1} s.t. sg41 — s < 0. Then for all k and ¢, we have

F(sg,t) = F(sgr1,t) + hi(t)
where |h(t)| < e. Since |F(skt1,t)| > €, we are in the situation of the previous lemma. Done. O

Corollary 2.7 (Topological argument principle). Let D be the closed unit disk in C and f : D — C cts
s.t. f(2) # 0 whenever |z| = 1. Let g : [0,1] — C with g(t) = f(e®*""). If w(g,0) # 0, then f has a root
in D.

Proof. Suppose f is never zero in D. We define F(s,t) = f(se?®™) for s,t € [0,1]?, i.e., g is null-
homotopic, so has winding number zero. O

Corollary 2.8. No retraction D — 0D.

Proof. If such a retraction exists, then define g(t) as in the previous corollary. Then w(g,0) = 1, so there
exists z s.t. f(z) = 0. Contradiction. O

Corollary 2.9 (FTA). Every non-constant complex poly has a root in C.

Proof. Let p(z) = anz™+...4+ag, an # 0. Choose r > 1 s.t. |anr| > |an—1|+...+|ao|. Then for |z| = r,
have
lanz™| > (|an_1| + ... + |ag|)r"*
> |an,1z”_1| + ...+ |a0|
> an_12"" 1 ..+ ag
Let f: D — C, z — p(rz), so f(z) = g(z) + h(z) where g(z) = an(rz)™. We have |g(2)] > |h(z)]
when |z| = 1. Consider the paths u = f(e®?™),v = g(e®™*),a = h(e**™). Have |a(t)| < |v(t)|. Apply

dog-walking lemma, get w(u,0) = w(v,0) = n. [Write a,, = ge'®, define §(t) = 2mnt + « is a cts choice
of argument]. So there exists zg s.t. f(z0) =0, so p(rzp) = 0. O



3 Polynomial Approximation

Proposition 3.1 (Chebyshev Inequality). Let X be a square integrable r.v. with EX = p and var(X) =
o2, then
1
P(X —pl 2z co) < 5
P?”OOf. 02 = E[(X - /’6)2] > (CUQ)E[l\Xf/ﬂZcU] O

Corollary 3.2. Let Xi,...,X,, be i.i.d Bernoulli variables with parameter ¢ € [0,1]. Let Y,(t) =
LS X;. Then
1

V6 > Oa ]P)(|Yn( ) - t‘ > 5) 52
Proof. Observe that 02 = var(Y,) < 1/n. Apply Chebyshev with ¢ = §y/n.
< b
0%n
Note that o < 1/4/n, so the first inequality makes sense. O

(|Yn - t| > 6) < ]P)(D/n - t| > (Jf) )

Theorem 3.3 (Weierstrass approximation theorem). Let f : [0,1] — R be cts. For alle > 0, there exists
a poly p s.t. ||p— flleo <e.

Proof. For each n =1,2,3,..., let Y =Y,,(¢t) be the r.v. defined in the previous corollary.
Step 1: We show that E[f(Y,(t))] is a polynomial in ¢. Compute

=3 f(k/n)P(Yo(t) =k/n) =Y f(k/n) < )tk(l — )"
k=0 k=0

Step 2: We show that for all € > 0, there exists a sufficiently large n s.t. |[E[f(Y,(¢))] — f(t)| < € for
all t € [0,1]. We know that IM > 0 s.t. |f(t)| < M for all ¢t. Let ¢ > 0. Uniform continuity implies that
|f(s) — f(t)] <e/2 whenever |s —t| < J. Now

P(f(Ya(t) ~ F(D)] > &) S B(Y, 1] > 6) < o
Choose n s.t. ﬁ < 157 so that
[E(f(Yn(t) — fF(0)] < E[f(Ya(t) — f(2)]
= E(|f n() = O rvn ) —r)1<e2) + EAFYa(®) = FOIL pv )1 0)22/2)
g

Z4oM— =
+ 1M €

and we are done. O

Corollary 3.4. Let f:[0,1] — R cts. Then there exists a seuquence of polys (px)ken S.t. px — f unif.
on [0,1] as k — oo.

Theorem 3.5 (Chebyshev equal ripple criterion). Let f : [0,1] — R be cts and p a polynomial of degree
p < n. Suppose there exists a < ap < a1 < -+ < ap < b s.t. ||f — plleo such that exactly one of the
following holds

(1) flar) = plar) = (=1)*||f = plloc for all k =0,...,n
(2) flar) = plar) = (=) Y|f = pllo for all k=0,...,n

Then, we have ||f — plloo < |lg = flleo for all polynomials ¢ with degq < m. (i.e. p is hte best poly
approximation of f of degree less than n)

Proof. Suppose p has property (1) and ¢ is a poly of deg < n with ||¢ — flleo < ||[p — fllco- Then

e for k even, we have f(ar) — p(ag) = ||f — plloo and f(ax) — q(ag) < r and f(ar) — g(ax) < 7, so
q(ax) > p(ak)

e for k odd, similar argument shows that ¢(ax) < p(ax).
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By IVT, we can find a root of p(t) — ¢(t) between (ay,axt1), so p(t) — q(t) has n roots. But this has
degree < n, so p =q. O]

In fact the equal ripple condition is also necessary.
We try to find a poly of deg < n which best approximates t".

Lemma 3.6. cos(nf) is a poly of deg n in cos with leading coeff 2"~ 1.
Proof. Expand (cos € + isin§)™. O
Definition 3.7. The nth Chebyshev polynomial T, (x) is defined by T, (cos 8) = cos(nd).

Observe that |T,,(t)| < 1 for ¢t € [—1, 1] with roots ¢ = cos % for I =1,...,n. It reaches extremum
at cos(km/n). If ay = cos(km/n), then 1 = ag > -+ > a, = —1 and T, (az) = (—1)*.

We can write T),(t) = 2"~ 1(t"—S,,(t)) for some poly S,,, s0 S,,(t) = t"—21""T,, (). Since [t"—S,(t)| <
217" and a} — Sy (ax) = 21 7"T,(ax) = (—1)*2'=". Therefore by Chebyshev criterion, we get

Proposition 3.8. S, (t) is the best poly approzimation (deg < n) of " on [—1,1]. For any polynomial
Q(t) of degree < n, we have [[t™ — Q(t)||oo > 2177,

Corollary 3.9.
(i) If p: [=1,1] = R defined by 3°7_y a;t’ with |a,| > 1, then ||plloc > 2771

(it) ¥n € N, 3e = ¢(n) > 0 s.t. if p(t) = Y7, axt? (so deg < n) and |ay| > 1 for somen >k >0
then ||plles > €.

Proof. (i): Consider

n—1
Iplloo = lan| sup |t 43" tgn| > 9ton
te[—1,1 =0 |an\

ii) Proceed by induction. If n = 0, then pick € = 1. Suppose the result holds for all poly of de
g
Consider p(t) = ap1t" ™ + 377 a;t = an1t™ +Q(t).

o If lanta| < e(n)/2, then [plloc > [[Qlloc = lant1] > &(n)/2.

o If |ap41] > e(n)/2, then ||p|| > ||t™ + ﬁ“Q(t)Hm > |an41127" > e(n)2717", so we set e(n + 1) =
g(n)2=1-n,

IN
3

O

Theorem 3.10. Let f: [-1,1] = R be a cts function. For all n € N, there exists a poly p of deg < n
st [[p = fllso < llg = flloo for all polys q of deg < n.

Proof. Let q(t) = 7 bt/

e Suppose 3j s.t. b; > 2“{;'27;")“ Then ||¢llco > es(n)ZHj;l(‘i;L"’)Jr1 = 2||flloc + 1 by (ii) of the previous
corollary. In this case, [[¢— fllooc = 2||flloc +1—=|fllcc > || f]loo- Certainly not the best poly approx.

e Otherwise, let
2||flloo +1
£(n)

Define k = infyep ||g — flloo- Then there exists ¢, € E s.t. ||gm — flloc = K as m — co. Write
am(t) = 3270 bj(m)ti. Note that the coefficients (regarded as a vector) is a bounded sequence in

E={q(t)=>_ bjt" : V], |bj| < }
j=0

R™*1, so admits a convergent subsequence by B-W. Let p* denote the limit. Have ||g,,, —p*|| — 0.

Can check that p* is the best approximation. O



4 Gaussian Integration

Recall inner products and L? norm on C[—1,1].

Lemma 4.1. There exists a sequence of polynomials (pn)nen € C[—1,1] with degp, =n and (pm,pn) =
Onm- Moreover, p, is unique up to scalar multiple.

Can fix ||pn||2 = 1 and require the leading coefficient is > 0.

Proof. Start with {t' : i € N}. Apply Gram-Schmidt. O

Corollary 4.2. If f is a poly of degree < n, then f_ll fon =0.
Lemma 4.3. p, has distinct roots, all in [—1,1].

Proof. Suppose 1, ...,z are all the distinct root of p,, having odd multiplicity. Consider ¢(t) = (¢t —

21)(t — zx), kK < n. Then ¢ changes sign precisely when p,, changes sign, so gp, doesn’t change sign.

Since ¢p,, is non-zero, we have (g, p,) # 0, so k = n (forced by the preceding corollary). O

Definition 4.4. p, discussed above is called the nth Legendre polynomial.

Theorem 4.5.

(i) Let aq, ..., be the roots of nth Legendre polynomial p, and Ay, ..., A, chosen so that fil P(t)dt =

> i—1 AjP () whenever degp < n. Then, f_ll Q(t)dt = 377, A;Q(ey;) whenever Q is a poly of
degree < 2n.

it) If B;, B; are alternative choices s.t. (i) holds, then {f;} = {a;} are the roots of Legendre polyno-
305 J g
mial.

Proof. (i): If deg @ < 2n, then @ = gp,, + r for some poly r s.t. degr < n. Note that degg < n so that
1 1
Jo QWdt = [Zyr(t)dt =37, Ajr(ay) = 32, Aj(alag)pa(ay) +r(ay)) = 355 A;Q(ay).
(ii): Suppose we have another set of choices. So f_ll Q(t)dt = >_,; B;Q(B;) whenever deg @ < 2n.

Consider p(t) = Hj(t — Bj). Consider (p,q) for degg < n. Note that degpg < 2n, so filpq =
Zj B;p(B;)q(B;) = 0. By the uniqueness of the construction of p,,, 8; are roots of p,,.

Lemma 4.6. Let o, ...,a, be the roots of the nth Legendre poly and A1, ..., A, numbers defined as in
the previous theorem. Then

(1) 22 Ai =2
(ii) A; >0 foralli=1,..,n

Proof. (i): Apply the first part of the preceding theorem to Q(t) = 1.
(ii): Define @;(t) = [, (¢t — a;)? O

Theorem 4.7. Forn > 1, let ay, ..., be the roots of the nth Legendre poly and A1, ..., A, as in the
preceding theorem. Let f : [—1,1] — R be a continuous function and € > 0. Then for all sufficiently large

/_1 f(t)dt — Z Aif(a)

Proof. By Weierstrass approximation theorem, there exists a polynomial p s.t. sup,c;_1 1) |f(t) —p(t)] <
e/4. For all n > %degp, have

‘/ f(t)dt — ZAif(ai)
-1 i=1

<é

<|/ 11(f(t) - ple)] +

ZAi(p(ai) — flaw))

The first term is < /2. The second term is < /2 by the preceding lemma. O
Remark 3. Can further show that
(i) Legendre poly p, = cc%(l —t2)" (cf. ES2 Q11)

(ii) Chebyshev polys can be presented as an orthogonal seugnece by integrating w.r.t. a weight function.
(cf. ES2 Q13)



5 Approximation by Complex Polynomials

When S C C is any set, a function being holo’c on S means that it is holo’c on some open set containing

S.

Theorem 5.1 (Runge). Let K C C be compact and [ a holo’c function on K. Suppose C\ K is
path-connected. Then Ve > 0 3 a poly p(z) s.t. sup,cx |f(2) —p(2)| < ¢

We write u.a.p. for "unif. approximable by polys”.

Lemma 5.2. If f,g are u.a.p. on K, then f+ g, fg,\f, A € C are also u.a.p. Furthermore, if f, is a
sequence of functions u.a.p. in K and f, — f unif. then f is u.a.p. in K.

Proof. Note that [|(Af + pg) — (Ap + p0)|lsc < A|f = plloo + 2llg — dlloc and ||fg — palloc = || fg — pg +
P9 — 14lloo < |gllocllf = Plloo + 2lloc|lg — @llso-
For the second part, note Hf _pHoo = ”f —fn+fn _pHoo < Hf - fn”oo + an _p”oo- O

Lemma 5.3. Let U C C open, K C U compact, f : U — C holo’c. Then there exists a ‘finite set of’
piecewise linear contours Cp,, m = 1,.... M, lying in U\ K s.t.

1= [ flw
ﬂw:%ng;émw_;m

forall z € K.

Proof. C\ U is closed and (C\ U) N K = @, then there exists 6 > 0 s.t. |z —w| > 6 for all z € K and
all w ¢ U. Cover C with grid of closed solid squares with length §/10. The number of such squares
is finite, so we have a finite list sq1,...,s; (all squares that meet K). Let Js; denote the boundary
of s; oriented counterclockwise. If z € K and z ¢ 0s; for all j, then there exists a unique s; s.t.
f(z) = 5= fasj f(w)/(w — z)dw by CIF. Note that the integrals over other squares are 0. The integral

27
over all internal edges cancel due to consistent orientation. Let E; be an edge of s; then |J Ej is a finite
set of closed contours we want. O

Proof of Runge’s theorem. Step 1: Prove that f is u.a. by rational functions p(z)/q(z) s.t. poles are
outside of K. First suppose K is connected. We expect a nice contour 7y : [0,1] = U\ K s.t. w(y,2) =1

for all z € K (preceding lemma). Then can write I, = f(z) = (2mi)~* f,y %dw for all z € K. Note
that ) )
1 t t
o= [ 10000,
2t Jo () — =

For each [ choose a linear parametrization v; : I — E s.t. 4/ = const, e.g. §/10. Consider the function

Fi(z,t) = %)))_é(t) is unif. cts on K x [0,1] as v(t) ¢ E; and E; N K = &. Hence,

sup \Fl(z,x)—Fl(Z,y” —0
|z—y|<1/N

uniformly in z € K.
Then

1 n
/ Fy(z,t)dt — % ZFl(zm/N)‘ -0

0 n=1

uniformly in z € K. Summing over Ej, get

F(z,t)dt—rn| — 0

UE

where 7y is a rational function.

Step 2: Prove that rational functions of the form 1/(a — z) is u.a.p. in K. Define S = {a € C\ K :

aiz u.a.p.}

e S £ . To see this, note that K is closed and bounded. Pick an « with sufficiently large modulus,
then we have a Taylor expansion which is loc. unif. convergent on a large open disk containing K.
Can take partial sums to get poly approximation.
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e S is open. Let a € S. Have

1 1 1 & fa-pY
Bz_(a_z)(l_‘;‘—f)_azjzo(az>

when | — 5] < |a — z|. By compactness, let d = inf,cx | — z|. Then such an expansion works
when 8 € Bgi(a), so Bg(a) C S.

e Now claim that S = C\ K. Suppose 8 ¢ K, choose a € S C C\ K. By path-connectedness, there
exists ¢ : [0,1] — C\ K with ¢(0) = «, p(1) = 8 By compactness of various things, we can find
0>0st. |z—p(t)] >0 forall z€ K and t € [0,1]. Choose a partition 0 =ty <t < -+ <t, =1
s.t. |o(tiv1) — @(ti)] < § for all ¢ (possible by uniform continuity). Then by the argument in the
second bullet point, § € S.

O

Remark 4. A stronger approximation result is given by S.N. Mergelyan: if K C C is compact and C\ K
connected and f: K — C cts s.t. flin (k) is holo’c, then f is u.a.p. on K. When C\ K is not connected,
u.a.p. in general is not possible but can approximate by rational functions.

Remark 5. If we only require pointwise convergence, then can e.g. show that f(re'?) = r3/2¢39/2 can
be pointwise approximated by polys on the closed unit disk. Let K, = {z =re? : 1/n <r < 1,21/n <
0 <27+ w/n}. Runge’s thm applies to each K, after a suitable branch of square root is chosen.

6 Irrationality, Transcendence, and Continued Fractions

Proposition 6.1. 7 is irrational.

Proof. Consider Sp(z) = 5 [, (22 — t?)" cos(t)dt IBP twice, obtain a recursive relation: S, (z) =
2n—1)Sp_1(z)—z Sn 2(x) for n > 2. Have So(z) = sin(z) and S;(x) = —x cosx +sinz. By induction,
can write S, (z) = gn(z)sinz + p,(x)cosz for some polys py,,q,, which satisfies the same recursive
relation p, = (2n— D)pp_1 = 2*pn_2, gn = (2n — 1)1 + 22q,_o, with initial condition pg = 0, p; = =,
go = ¢1 = 1. Induction also shows that degp,, degq, < n and with integer coeff. Evaluate at /2,
see that g,(m/2) = Sp(7w/2) > 0. Suppose m € Q, then write 7r/2 =r/s forr,s € N coprime Then
gn(7/2) = Z?:o a;(r/s)® > 1/s". On the other hand, ¢, (7/2) < 5 3(5)?", so 1 < L (2% ) — 0 as
n — 0o. Contradiction. O

Recall the defn of algebraic number and the defn of transcendental numbers.

Theorem 6.2 (Liouville). Let « be an irrational root of the equation anz™+-- -+ ag = 0, where a, # 0
and a; € Z for all j. Then there exists a constant ¢ s.t. |a —p/q| > ¢/q" for all p,q € Z with q # 0.

Proof. Pick R > 1 s.t. all the roots of P lie in [-R+ 1,R + 1]. If we take 0 < ¢ < 1, then the result
holds outside of [—R, R].

By compactness of [—R, R], we find a bound M > 1 s.t. |P’| < M on [-R,R]. If « is an irrational
root and p, q € Z with g # 0 and P(p/q) # 0, then MVT says

[P(a) = Plp/q)| < M|o—2

ie.,

|P (p/q|<M‘a—*

Note that ¢"P(p/q) € Z is a non-zero integer, so |¢"P(p/q)| > 1, so we have
Mg < ’oz - =
Since there are only finitely many roots, we know that there is a ¢/ > 0 s.t. |a — §| > /q~™ for all such

« and valid p, q.
We are now done by taking ¢ = min{M 1 ¢/, 1}. O



Corollary 6.3. The number Y.~ o ﬁ 1s transcendental.

Corollary 6.4. For all irrational o > 0, we can find u,,v, € N s.t. v, = 00 and |a — uy,/v,| < 1/v2.

It is useful to observe if a,b,@,b € N are s.t. ged(a,b) = 1, ged(a,b) = 1, then |a/b— a/b| > 17113'
Theorem 6.5. Let a > 0 be irrational and Z—" convergents of a. Suppose k is odd. Then for allp/q € Q
with p/q € (Pe—1/qk—1,Pr/ar) have ¢ > qy.

A similar statement holds when k is even.

Proof. Suppose p, q coprime. If ¢ < g, then (exactly) one of the following holds. If « < p/q < pr/qk,
then |px/ar — p/q| > ﬁ > —L > |a — pp/qu|- Contradiction. If pr_1/qe_1 < p/q < «, then

dkqrk+1  —
|pr—1/qk—1 —p/q| > qqifl > qkillqk > | — pr/qx|. Contradiction O

Lemma 6.6. For all n, |& — pn—1/qn-1] > |& — pn/qnl-

Proof. « is between pg_1/qr—1 and p,, /qn, so suffices to prove |pn—1/qn—1—Pn/qn| > 2|ac —pn/qn|. Note

that LHS> 7 ql — and RHS< 7 q2 - Note that ¢,+1 = @n+1qn + @n-1 = @n + @nt1 > 2¢n—1, and we

are done. O

Theorem 6.7. Suppose « is irrational, p,/q, a convergent. Then |p, /g, —a| < |p/q—«a| for allp,q € Z
with 0 < g < qp,-

Proof. Preceding lemma and thm O

Theorem 6.8. Let o > 0 be irrational. If p,q coprime and | — p/q| < #, then p/q = pr/qx for some
k

Proof. qy is strictly increasing with k, so there exists a unique k with ¢ < g < gr+1. Suppose pr/qr <
a < pr+1/qk+1 (wlog, since the other case is very similar).
If p/q < pr/qx, then |a — p/q| > |pr — p/q| > L > q%. Contradiction. If py/qr = p/q, then we

= 4
are done. If pr/qr < p/q, then |p/q — pr/ax| = 5= > s > la = pr/awl, so pr/ar < o < p/q.
Further, can’t have p/q < pr+1/qk+1, 50 Pe/qk < & < Pr+1/qk+1 < p/q. Then either ¢ > qr11/2 (in
this case |a — p/q| > |pr+1/qk+1 — p/a| > e 2 ﬁ contradiction) or 0 < ¢ < gr4+1/2 (in this case
la —p/al = |p/a = pr/ak| = lpr/ak — ol = 5o — i

1 1 _ 1 (1 1
Pe/ak = p/q. O

e ) > 2—}12 Contradiction). Hence,

R

Observe that “larger a,,” = “larger q,,” == better approximation of a.
Consider a slight generalization of continued fraction Let

_ x
3 522/

Proposition 6.9. R, (z) — tan(z) as n — oo whenever |z| < 1.

More generally, can consider
bo
ap + 7+ b
a
! as+22

for sequences (a;), (b;), b; € R, a; € Z and ag > 0, a; > 0 for j > 0.

Have b
Dn 0
PR r——
n ay
az-‘r. b2_1
an
and b
k k
P ak + k+1
Sk Ok+1+ —5,—



— b Tp terms of matrices
Tk+1/5k+1

1
(re sk) = (Th41  Skt1) (Z: 0)

Then have 7 /sy = a +

So . .
Ay, — a
G 0 =G0 s0) = (o 1) (50 0) (30 )
and
Ap—1 1 ag 1
Hence
Pn dn _ an, 1 Pn—1 dn—1
bnpnfq bn‘]nfl bn 0 bnflpnfl bnfl(Infl
SO

DPn = GpPpn—1 + bp_1Dn—2
_ (t)
Gn = AnQn—1 + bn—lQn—Q

Proof. Apply (1) to Ry (x), we have Ry(z) = x/2, Ry(x) = 32Z; and recurrence relation

pu(a) = (2n — )pp—i(z) — 2%pp—2(z)
(@) = (2n — 1)gn-1(2) — z%¢n—2(2)
Now
_ Pal®) _ gu(2)sin(z) — pu(z) cos(z) sn ()

(@) qn () cos(x) ~ qn(2) cos(x)

tan(x)
Recall from the proof that 7 is irrational the integral expression s (z) = 5 [o (% — )" cos(t)dt. So

1
|sn(z)| < zTn,anH —0

since |z| is bounded.

Need to bound ¢, from below. Let r,(z) = qgi(ji), then r,(z) = (2n—1) — rn%f(x) Iflz] <1,n>2
and [r,_1(z)| > 1, then 7, (z) > 2n — 1 —1=2n -2 > 2, 50 g,(x) — 00 as n — oo. Since |z| < 1, have
ro(x) = q2(x) = 3 — 22 > 2 and ¢1(x) = 1. Therefore the above is true. O

7 Properties of Hausdorff Topological Spaces

Theorem 7.1. Let (X,7) be cpt hausdorff. Then there is no strictly finer topology on X making it
compact and there is no strictly coarser topology on X making it Hausdorff

Proof. Topological inverse function theorem applied to the identity of X changing topology. O

Definition 7.2. A top. space X is regular if for given x € X and a closed subset F' C X not containing
x, there exists disjoint open U,V C X sit. € U, FCV, UNV =g

Definition 7.3. A top. space X is normal if for all F,G C X disjoint closed subsets, there exists U, V'
disjoint open s.t. F CU, G C V.

Definition 7.4. A top. space X is Tj if for all z,y € X distinct, there exists an open set U C X s.t.
x¢UandyeU.

If X is T1, then normal implies regular implies Hausdorff. Recall from IB Anatop that any compact
Hausdorff space is normal and regular.
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8 Baire Category Theorem

Definition 8.1. X a top. space, Y C X.
(1) Yis dense if Y N U # @ for all U non-empty open subset of X.
(2) If V C X is open, then Y is said to be dense in V if Y NU # & for all U C V is open and non-empty.

(3) Y is nowhere dense if for all open non-empty V' C X, there exists open U C V s.t. UNY =&, i.e.,
Y is not dense in any open subset of X.

The Cantor set C' is nowhere dense. For any y; < y2, we can find p and n s.t. (p_1 m) C (y1,y2),

3TL b) 371,
then either (51, 2)NX =@ or (£,21)NX =o.

Theorem 8.2 (Baire (open set version)). Suppose X is a non-empty complete metric space. Suppose
(Us)ien is a sequence of open dense subsets of X. Then (., U; = @.

Proof. Pick 1 € Uy and a closed ball By = B.,(z1) C U with ;1 < 1. Pick o € B, (z) N Uy and
consider By = B.,(z2) C Be, (x1) N Us with g2 < 1/2. Inductively, given x,,_1 and B, _1, can choose x,,
and By, s.t. B, C B.,_,(x) NU,. Thus have a a nested sequence of closed balls By D By D ---. Note
that (z,,)nen is Cauchy, so converges by completeness. Also, for all k, n > k = =z, € By, (closed), so
x € B, for all n, so x € ",y Un-

O

Lemma 8.3. X top. space. Y C X. IfY is nowhere dense, then so is Y.

Proof. Given U C X open and non-empty, find V' C U opens.t. VNY =g,s0Y C X\V, so Y CX\V
by property of closure, so Y NV = @. O

Lemma 8.4. X top. space, U C X. U is open dense iff X \ U is closed and nowhere dense.

Proof. It U is open dense, then X \ U is certainly closed. If W is non-empty open, then U N W # &,
then UNWNY =2.

Conversely, if X \ U is closed and nowhere dense, then U is certainly open. Given W open and
non-empty, there exists VC W opens.t. VNX\U =&, then VCU,so WNU # &. O

Corollary 8.5. f, € C[0,1]. If f,, — f pointwise on [0, 1], then there exists a subinterval (a,b) on which
f is bounded.

Remark 6. With some work, can show that the set of discontinuities must be meager. (e.g., Thomae’s
function is cts on irrational nums but discts on rational nums)

Let 7, be an enumeration of Q@ N (0,1), and let f, be the unique piecewise linear function s.t.
fu(rg) = f(rg) for all k <n and f,(0) = f,(1) =0 and f, is diff at each x # ry

Theorem 8.6. There exists a cts f : [0,1] = R which is nowhere diff at any x € (0,1).
We shall prove that in C|0, 1], the set {f € C[0,1] : f/(z) exists at some z € (0,1)} is meager.

Proof. Define A,, = {f € C[0,1] : 3z € (0,1), Vy € ([x — 1/n,2) U (x,2 + 1/n]) N[0, 1], |%£(y)| <n}.

(Lemma) A, is closed for all n. Fix n, let (f;) be a sequence in A,, which converges uniformly
in C[0,1]. We get a sequence (zy) s.t. |%:£(y)| < n for all y in proper range. By passing to a
subsequence if necessary, may assume that z — = € [0, 1]. By uniform convergence, fi(zr) — f(z), so
we can show that for 0 < |z —y| < 1/n, |%ﬁ(y)| < n. By continuity it holds when |z —y| = 1/n.

(Lemma) A, has empty interior. Given f € C[0,1] and ¢ > 0, by uniform continuity, find § > 0 s.t.
|f(z)— f(y)| < € whenever |z —y| < § for all 2,y € [0,1]. Choose a dissection 0 =ag < a1 < ... <ay =1
with |a; — a;—1| < §. Define a piecewise linear function p € C[0,1] s.t. p(a;) = f(a;) and linear between
those pts. Then [|p — fllooc < &. If Bao(f) C Ay, then B.(p) C A,, so we reduce to piecewise linear
functions f = p. Assume this, f’ is piecewise constant, so take only finitely many values. There exists M
s.t. |f'(z)| < M for all but finitely many x. Take M’ > 0 (to be specified later) define g s.t. for j € Z,
0<j <M g(j/M)=(—1) Then ||f + 3eg — f|| < ¢ But the slope around z € [0,1] is > [eM’ — M|
Choose M’ large enough, e.g. (M +n+ 1)/e so that M’e — M = n+ 1. Then f + 3eg € B:(f) but
f+3eq¢ A

Done by Baire. O
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Proposition 8.7. Assume f, € C[0,1] and f(z) = lim f,,(x) exists for all xz. Then C = {x € [0,1] :
f cts at x} is dense in (0,1).

Proof. For N,k € N, define Fny = (), ,sn{z € [0,1] ¢ [fu(z) — fm(2)] < 1/k}. Fyy is closed by
continuity. For all k € N we have Uy_, Fxx = [0,1] as f, is pointwise Cauchy. Let Uy = Uy Fi -
Given (a,b) C [0,1], Un>;(Fnx N [a,b]) = [a,b], so Baire implies F N [a,b] contains (a, 3) for some
a < (3 and some k, so (a, 3) C U N (a,b) O
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